A random forest regressor based uncertainty quantification of porosity estimation from multiple seismic attributes

[1]  Jiubing Cheng,et al.  Probabilistic lithofacies prediction from prestack seismic data in a heterogeneous carbonate reservoir , 2014 .

[2]  Ernesto Della Rossa,et al.  Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion , 2010 .

[3]  Kaibo Zhou,et al.  A gradient boosting decision tree algorithm combining synthetic minority oversampling technique for lithology identification , 2020, GEOPHYSICS.

[4]  Andrew Curtis,et al.  Fast probabilistic petrophysical mapping of reservoirs from 3D seismic data , 2012 .

[5]  B. Huwe,et al.  Uncertainty in the spatial prediction of soil texture: Comparison of regression tree and Random Forest models , 2012 .

[6]  Raphael A. Viscarra Rossel,et al.  Mapping gamma radiation and its uncertainty from weathering products in a Tasmanian landscape with a proximal sensor and random forest kriging , 2014 .

[7]  T. Mukerji,et al.  Seismic estimation of reservoir properties with Bayesian evidential analysis , 2018 .

[8]  T. Mukerji,et al.  Petrophysical properties prediction from prestack seismic data using convolutional neural networks , 2020 .

[9]  T. Johansen,et al.  Inverse rock physics modeling for reservoir quality prediction , 2013 .

[10]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[11]  Ghassan Al-Regib,et al.  Petrophysical property estimation from seismic data using recurrent neural networks , 2018, SEG Technical Program Expanded Abstracts 2018.

[12]  Baishali Roy,et al.  Time-lapse reservoir property change estimation from seismic using machine learning , 2017 .

[13]  Matthew J. Cracknell,et al.  The upside of uncertainty: Identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines , 2013 .

[14]  Yanghua Wang,et al.  Porosity prediction using the group method of data handling , 2011 .

[15]  W. T. Wood,et al.  Predicting Global Marine Sediment Density Using the Random Forest Regressor Machine Learning Algorithm , 2020, Journal of Geophysical Research: Solid Earth.

[16]  Matt Hall,et al.  Distributed collaborative prediction: Results of the machine learning contest , 2017 .