The evolution of metazoan extracellular matrix

The modular domain structure of extracellular matrix (ECM) proteins and their genes has allowed extensive exon/domain shuffling during evolution to generate hundreds of ECM proteins. Many of these arose early during metazoan evolution and have been highly conserved ever since. Others have undergone duplication and divergence during evolution, and novel combinations of domains have evolved to generate new ECM proteins, particularly in the vertebrate lineage. The recent sequencing of several genomes has revealed many details of this conservation and evolution of ECM proteins to serve diverse functions in metazoa.

[1]  Richard O Hynes,et al.  Extracellular matrix proteins in hemostasis and thrombosis. , 2012, Cold Spring Harbor perspectives in biology.

[2]  Steven A. Carr,et al.  The Matrisome: In Silico Definition and In Vivo Characterization by Proteomics of Normal and Tumor Extracellular Matrices , 2011, Molecular & Cellular Proteomics.

[3]  R. Tucker,et al.  Tenascins and the importance of adhesion modulation. , 2011, Cold Spring Harbor perspectives in biology.

[4]  P. Yurchenco Basement membranes: cell scaffoldings and signaling platforms. , 2011, Cold Spring Harbor perspectives in biology.

[5]  P. Handford,et al.  TB domain proteins: evolutionary insights into the multifaceted roles of fibrillins and LTBPs. , 2011, The Biochemical journal.

[6]  Josephine C. Adams,et al.  The Evolution of Extracellular Matrix , 2010, Molecular biology of the cell.

[7]  D. Lavrov,et al.  Molecular Phylogeny Restores the Supra-Generic Subdivision of Homoscleromorph Sponges (Porifera, Homoscleromorpha) , 2010, PloS one.

[8]  B. Degnan,et al.  Origin of animal epithelia: insights from the sponge genome , 2010, Evolution & development.

[9]  J. Couchman,et al.  Transmembrane signaling proteoglycans. , 2010, Annual review of cell and developmental biology.

[10]  Josephine C. Adams,et al.  The evolution of thrombospondins and their ligand-binding activities. , 2010, Molecular biology and evolution.

[11]  Todd H. Oakley,et al.  The Amphimedon queenslandica genome and the evolution of animal complexity , 2010, Nature.

[12]  A. Roger,et al.  Ancient origin of the integrin-mediated adhesion and signaling machinery , 2010, Proceedings of the National Academy of Sciences.

[13]  B. Morgenstern,et al.  Improved Phylogenomic Taxon Sampling Noticeably Affects Nonbilaterian Relationships , 2010, Molecular biology and evolution.

[14]  Benjamin M. Wheeler,et al.  The dynamic genome of Hydra , 2010, Nature.

[15]  C. Cluzel,et al.  The Fibrillar Collagen Family , 2010, International journal of molecular sciences.

[16]  Richard O. Hynes,et al.  The Extracellular Matrix: Not Just Pretty Fibrils , 2009, Science.

[17]  L. Schaefer,et al.  The matricellular functions of small leucine-rich proteoglycans (SLRPs) , 2009, Journal of Cell Communication and Signaling.

[18]  J. Sadler von Willebrand factor assembly and secretion , 2009, Journal of thrombosis and haemostasis : JTH.

[19]  Corinne Da Silva,et al.  Phylogenomics Revives Traditional Views on Deep Animal Relationships , 2009, Current Biology.

[20]  R. Tucker,et al.  Evidence for the evolution of tenascin and fibronectin early in the chordate lineage. , 2009, The international journal of biochemistry & cell biology.

[21]  J. Heino,et al.  Evolution of collagen-based adhesion systems. , 2009, The international journal of biochemistry & cell biology.

[22]  B. Schierwater,et al.  Concatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern “Urmetazoon” Hypothesis , 2009, PLoS biology.

[23]  Bernard M Degnan,et al.  Demosponge and Sea Anemone Fibrillar Collagen Diversity Reveals the Early Emergence of A/C Clades and the Maintenance of the Modular Structure of Type V/XI Collagens from Sponge to Human* , 2008, Journal of Biological Chemistry.

[24]  Nicholas H. Putnam,et al.  The Trichoplax genome and the nature of placozoans , 2008, Nature.

[25]  Nicholas H. Putnam,et al.  The amphioxus genome and the evolution of the chordate karyotype , 2008, Nature.

[26]  D. Hayward,et al.  Unexpected diversity of cnidarian integrins: expression during coral gastrulation , 2008, BMC Evolutionary Biology.

[27]  Kamran Shalchian-Tabrizi,et al.  Multigene Phylogeny of Choanozoa and the Origin of Animals , 2008, PloS one.

[28]  Nicholas H. Putnam,et al.  The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans , 2008, Nature.

[29]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[30]  David L. Robertson,et al.  The Collagens of Hydra Provide Insight into the Evolution of Metazoan Extracellular Matrices* , 2007, Journal of Biological Chemistry.

[31]  Robert D Burke,et al.  The echinoderm adhesome. , 2006, Developmental biology.

[32]  G. Deléage,et al.  Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates. , 2006, Molecular biology and evolution.

[33]  N. Satoh,et al.  Molecular evolution of fibrillar collagen in chordates, with implications for the evolution of vertebrate skeletons and chordate phylogeny , 2006, Evolution & development.

[34]  J. Huxley-Jones,et al.  The integrins of the urochordate Ciona intestinalis provide novel insights into the molecular evolution of the vertebrate integrin family , 2005, BMC Evolutionary Biology.

[35]  H. Philippe,et al.  Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. , 2005, Molecular biology and evolution.

[36]  J. Heino,et al.  Integrin evolution: insights from ascidian and teleost fish genomes. , 2005, Matrix biology : journal of the International Society for Matrix Biology.

[37]  D. Hayward,et al.  A simple plan — cnidarians and the origins of developmental mechanisms , 2004, Nature Reviews Genetics.

[38]  S. Carroll,et al.  Evolution of Key Cell Signaling and Adhesion Protein Families Predates Animal Origins , 2003, Science.

[39]  Paul Richardson,et al.  The Draft Genome of Ciona intestinalis: Insights into Chordate and Vertebrate Origins , 2002, Science.

[40]  R. Hynes,et al.  Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. , 2002, Molecular biology of the cell.

[41]  J. Finnerty,et al.  The Radiata and the evolutionary origins of the bilaterian body plan. , 2002, Molecular phylogenetics and evolution.

[42]  J. Engel,et al.  Domain structure and organisation in extracellular matrix proteins. , 2002, Matrix biology : journal of the International Society for Matrix Biology.

[43]  Richard O. Hynes,et al.  The Evolution of Cell Adhesion , 2000, The Journal of cell biology.

[44]  H. Hutter,et al.  Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. , 2000, Science.

[45]  L. Patthy Genome evolution and the evolution of exon-shuffling--a review. , 1999, Gene.

[46]  J. Engel Domain organizations of modular extracellular matrix proteins and their evolution. , 1996, Matrix biology : journal of the International Society for Matrix Biology.

[47]  Alexandra Naba,et al.  Overview of the matrisome--an inventory of extracellular matrix constituents and functions. , 2012, Cold Spring Harbor perspectives in biology.

[48]  S. Ricard-Blum The collagen family. , 2011, Cold Spring Harbor perspectives in biology.

[49]  Ulrich Müller,et al.  Extracellular matrix: functions in the nervous system. , 2011, Cold Spring Harbor perspectives in biology.

[50]  Josephine C. Adams,et al.  The thrombospondins. , 2011, Cold Spring Harbor perspectives in biology.

[51]  L. Schaefer,et al.  Proteoglycans: from structural compounds to signaling molecules , 2009, Cell and Tissue Research.

[52]  David L Robertson,et al.  On the origins of the extracellular matrix in vertebrates. , 2007, Matrix biology : journal of the International Society for Matrix Biology.

[53]  K. Kivirikko,et al.  Collagens, modifying enzymes and their mutations in humans, flies and worms. , 2004, Trends in genetics : TIG.

[54]  N. Noro,et al.  Type IV collagen in sponges, the missing link in basement membrane ubiquity * , 1996, Biology of the cell.