Current-induced magnetization dynamics. Global existence of weak solutions
暂无分享,去创建一个
[1] Andreas Prohl,et al. Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation , 2007, Math. Comput..
[2] Augusto Visintin,et al. On Landau-Lifshitz’ equations for ferromagnetism , 1985 .
[3] François Alouges,et al. On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness , 1992 .
[4] J. Shibata,et al. Microscopic calculation of spin torques and forces , 2006 .
[5] Berger. Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.
[6] Luc Tartar,et al. Topics in nonlinear analysis , 1978 .
[7] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[8] Paolo Podio-Guidugli,et al. Existence of global-in-time weak solutions to a modified Gilbert equation , 2001 .
[9] T. Roubíček,et al. The Gilbert equation with dry-friction-type damping , 2009 .
[10] Augusto Visintin,et al. Modified Landau-Lifshitz equation for ferromagnetism , 1997 .
[11] J. Slonczewski. Current-driven excitation of magnetic multilayers , 1996 .
[12] M. Bertsch,et al. On the dynamics of deformable ferromagnets , 2001 .
[13] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[14] On a model of magnetization switching by spin-polarized current , 2006 .
[15] Gilles Carbou,et al. Time Average in Micromagnetism , 1998 .
[16] Lawrence C. Evans,et al. Weak convergence methods for nonlinear partial differential equations , 1990 .
[17] Andreas Prohl,et al. Recent Developments in the Modeling, Analysis, and Numerics of Ferromagnetism , 2006, SIAM Rev..
[18] Andreas Prohl,et al. Convergence of an Implicit Finite Element Method for the Landau-Lifshitz-Gilbert Equation , 2006, SIAM J. Numer. Anal..
[19] François Alouges,et al. CONVERGENCE OF A FINITE ELEMENT DISCRETIZATION FOR THE LANDAU¿LIFSHITZ EQUATIONS IN MICROMAGNETISM , 2006 .