Use of power averaging for quantifying the influence of structure organization on permeability upscaling in on‐lattice networks under mean parallel flow

with the local permeability distribution variance s 2 is nonnegligible but remains small. It is equal to 0.09 for sparse networks and 0.14 for dense networks representing 4.5% and 7%, respectively, of the full possible range of w values. Power averaging is not strictly valid but gives an estimate of upscaling at a few percent. Here w depends slightly on the local permeability distribution shape beyond its variance but mostly on the morphological network structures. Most of the morphological control on upscaling for on‐lattice structures is local and topological and can be explained by the dependence on the average number of neighbor by points (effective coordination number) within the flowing structure (backbone).

[1]  Steven M. Gorelick,et al.  Effective groundwater model parameter values: Influence of spatial variability of hydraulic conductivity, leakance, and recharge , 1989 .

[2]  John H. Cushman,et al.  On Measurement, Scale, and Scaling , 1986 .

[3]  John H. Cushman,et al.  A primer on upscaling tools for porous media , 2002 .

[4]  Thompson,et al.  Quantitative prediction of permeability in porous rock. , 1986, Physical review. B, Condensed matter.

[5]  P. Renard,et al.  Calculating equivalent permeability: a review , 1997 .

[6]  Jesús Carrera,et al.  On the relationship between indicators of geostatistical, flow and transport connectivity , 2005 .

[7]  Clayton V. Deutsch,et al.  Power Averaging for Block Effective Permeability , 1986 .

[8]  Jean-Raynald de Dreuzy,et al.  Hydraulic properties of two‐dimensional random fracture networks following a power law length distribution: 2. Permeability of networks based on lognormal distribution of apertures , 2001 .

[9]  Jocelyne Erhel,et al.  Efficient algorithms for the determination of the connected fracture network and the solution to the steady-state flow equation in fracture networks , 2003 .

[10]  Elisabeth Charlaix,et al.  Permeability of a random array of fractures of widely varying apertures , 1987 .

[11]  Allen G. Hunt,et al.  Applications of percolation theory to porous media with distributed local conductances , 2001 .

[12]  Charles F. Harvey,et al.  What does a slug test measure: An investigation of instrument response and the effects of heterogeneity , 2002 .

[13]  Benoit Noetinger,et al.  Computing the effective permeability of log-normal permeability fields using renormalization methods , 2000 .

[14]  Timothy D. Scheibe,et al.  Scaling of flow and transport behavior in heterogeneous groundwater systems , 1998 .

[15]  Timothy A. Davis,et al.  A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.

[16]  Vittorio Di Federico,et al.  Multifaceted nature of hydrogeologic scaling and its interpretation , 2003 .

[17]  Jesús Carrera,et al.  Scale effects in transmissivity , 1996 .

[18]  Galam,et al.  Universal formulas for percolation thresholds. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Brian Berkowitz,et al.  PERCOLATION THEORY AND ITS APPLICATION TO GROUNDWATER HYDROLOGY , 1993 .

[20]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[21]  A. Desbarats Spatial averaging of transmissivity in heterogeneous fields with flow toward a well , 1992 .

[22]  C. Axness,et al.  Three‐dimensional stochastic analysis of macrodispersion in aquifers , 1983 .

[23]  S. Havlin,et al.  Diffusion in disordered media , 2002 .

[24]  P. Indelman,et al.  A higher‐order approximation to effective conductivity in media of anisotropic random structure , 1994 .

[25]  Feng,et al.  Transport properties of continuum systems near the percolation threshold. , 1987, Physical review. B, Condensed matter.

[26]  A. J. Desbarats,et al.  Spatial averaging of hydraulic conductivity under radial flow conditions , 1994 .

[27]  Brian Berkowitz,et al.  Percolation Theory and Network Modeling Applications in Soil Physics , 1998 .

[28]  Robert D. Falgout,et al.  Pursuing scalability for hypre's conceptual interfaces , 2004, TOMS.

[29]  Vinay Ambegaokar,et al.  Hopping Conductivity in Disordered Systems , 1971 .

[30]  J. Gómez-Hernández,et al.  Upscaling hydraulic conductivities in heterogeneous media: An overview , 1996 .

[31]  Daniel M. Tartakovsky,et al.  Effective Hydraulic Conductivity of Bounded, Strongly Heterogeneous Porous Media , 1996 .

[32]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[33]  P. Indelman,et al.  Effective permittivity of log-normal isotropic random media , 1995 .

[34]  Benoît N∄tinger,et al.  The effective permeability of a heterogeneous porous medium , 1994 .

[35]  Jean-Raynald de Dreuzy,et al.  Hydraulic properties of two‐dimensional random fracture networks following a power law length distribution: 1. Effective connectivity , 2001 .

[36]  Hans-Jörg Vogel,et al.  Upscaling hydraulic conductivity based on the topology of the sub-scale structure , 2007 .

[37]  Anthony Beaudoin,et al.  A parallel scientific software for heterogeneous hydrogeoloy , 2009 .

[38]  P. Grassberger,et al.  Conductivity exponent and backbone dimension in 2-d percolation , 1998, cond-mat/9808095.

[39]  G. Dagan Flow and transport in porous formations , 1989 .

[40]  X. Sanchez‐Vila,et al.  Representative hydraulic conductivities in saturated groundwater flow , 2006 .

[41]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[42]  A. De Wit,et al.  Correlation structure dependence of the effective permeability of heterogeneous porous media , 1995 .

[43]  Steven M Gorelick,et al.  Effective permeability of porous media containing branching channel networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Benoît Nœtinger Computing the effective permeability of log-normal permeability fields using renormalization methods , 2000 .

[45]  A. J. Desbarats,et al.  Spatial averaging of hydraulic conductivity in three-dimensional heterogeneous porous media , 1992 .