Gas-phase formation of the prebiotic molecule formamide: insights from new quantum computations

New insights into the formation of interstellar formamide, a species of great relevance in prebiotic chemistry, are provided by electronic structure and kinetic calculations for the reaction NH2 + H2CO -> NH2CHO + H. Contrarily to what previously suggested, this reaction is essentially barrierless and can, therefore, occur under the low temperature conditions of interstellar objects thus providing a facile formation route of formamide. The rate coefficient parameters for the reaction channel leading to NH2CHO + H have been calculated to be A = 2.6x10^{-12} cm^3 s^{-1}, beta = -2.1 and gamma = 26.9 K in the range of temperatures 10-300 K. Including these new kinetic data in a refined astrochemical model, we show that the proposed mechanism can well reproduce the abundances of formamide observed in two very different interstellar objects: the cold envelope of the Sun-like protostar IRAS16293-2422 and the molecular shock L1157-B2. Therefore, the major conclusion of this Letter is that there is no need to invoke grain-surface chemistry to explain the presence of formamide provided that its precursors, NH2 and H2CO, are available in the gas-phase.

[1]  G. Nyman,et al.  THE 2014 KIDA NETWORK FOR INTERSTELLAR CHEMISTRY , 2015, 1503.01594.

[2]  C. Vastel,et al.  Shedding light on the formation of the pre-biotic molecule formamide with ASAI , 2015, 1502.05762.

[3]  F. Duvernay,et al.  Hydrogenation at low temperatures does not always lead to saturation: the case of HNCO , 2015, 1502.03282.

[4]  Adwin Boogert,et al.  Observations of the Icy Universe , 2015, 1501.05317.

[5]  Nadia Balucani,et al.  Formation of complex organic molecules in cold objects: the role of gas-phase reactions , 2015, 1501.03668.

[6]  P. Redondo,et al.  PEPTIDE BOND FORMATION THROUGH GAS-PHASE REACTIONS IN THE INTERSTELLAR MEDIUM: FORMAMIDE AND ACETAMIDE AS PROTOTYPES , 2014 .

[7]  C. Ceccarelli,et al.  Molecules with a peptide link in protostellar shocks: a comprehensive study of L1157 , 2014, 1408.4857.

[8]  E. Caux,et al.  THE CENSUS OF COMPLEX ORGANIC MOLECULES IN THE SOLAR-TYPE PROTOSTAR IRAS16293-2422 , 2014, 1406.7195.

[9]  D. Lis,et al.  Complex organic molecules in comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy): detection of ethylene glycol and formamide , 2014, 1405.6605.

[10]  C. Ceccarelli,et al.  Molecular ions in the protostellar shock L1157-B1 , 2014, 1402.2329.

[11]  P. Redondo,et al.  SOME INSIGHTS INTO FORMAMIDE FORMATION THROUGH GAS-PHASE REACTIONS IN THE INTERSTELLAR MEDIUM , 2013 .

[12]  Tokyo Institute of Technology,et al.  Complex organic molecules in protoplanetary disks , 2013, 1403.0390.

[13]  N. Woolf,et al.  Observations of interstellar formamide: availability of a prebiotic precursor in the galactic habitable zone. , 2013, Astrobiology.

[14]  R. Garrod A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE , 2013, 1302.0688.

[15]  C. Ceccarelli,et al.  DETECTION OF FORMAMIDE, THE SIMPLEST BUT CRUCIAL AMIDE, IN A SOLAR-TYPE PROTOSTAR , 2013 .

[16]  Marzio Rosi,et al.  Combined crossed beam and theoretical studies of the C(1D) + CH4 reaction. , 2013, The Journal of chemical physics.

[17]  N. Sakai,et al.  The 3 mm Spectral Line Survey toward the Lynds 1157 B1 Shocked Region. I. Data , 2012 .

[18]  Cecilia Ceccarelli,et al.  Our astrochemical heritage , 2012, 1210.6368.

[19]  J. Cernicharo,et al.  THE CHESS SURVEY OF THE L1157-B1 SHOCK REGION: CO SPECTRAL SIGNATURES OF JET-DRIVEN BOW SHOCKS , 2012, 1208.4140.

[20]  R. Saladino,et al.  Genetics first or metabolism first? The formamide clue. , 2012, Chemical Society reviews.

[21]  J. Troe,et al.  A KINETIC DATABASE FOR ASTROCHEMISTRY (KIDA) , 2012, 1201.5887.

[22]  L. Ziurys,et al.  FORMATION OF PEPTIDE BONDS IN SPACE: A COMPREHENSIVE STUDY OF FORMAMIDE AND ACETAMIDE IN Sgr B2(N) , 2011 .

[23]  R. Kaiser,et al.  MECHANISTICAL STUDIES ON THE PRODUCTION OF FORMAMIDE (H2NCHO) WITHIN INTERSTELLAR ICE ANALOGS , 2011 .

[24]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[25]  A. Tielens,et al.  TIMASSS: the IRAS 16293-2422 millimeter and submillimeter spectral survey. I. Observations, calibration, and analysis of the line kinematics , 2011, 1103.5347.

[26]  S. Grimme,et al.  Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals-Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. , 2011, Journal of chemical theory and computation.

[27]  Maryvonne Gerin,et al.  Herschel spectral surveys of star-forming regions : overview of the 555-636 GHz range , 2010 .

[28]  D. Lis,et al.  The solar type protostar IRAS16293-2422: new constraints on the physical structure , 2010, 1003.5774.

[29]  Marzio Rosi,et al.  Crossed-beam dynamics, low-temperature kinetics, and theoretical studies of the reaction S(1D) + C2H4. , 2009, The journal of physical chemistry. A.

[30]  Hannah R. Leverentz,et al.  Efficient Diffuse Basis Sets: cc-pVxZ+ and maug-cc-pVxZ. , 2009, Journal of chemical theory and computation.

[31]  R. Garrod,et al.  Complex Chemistry in Star-forming Regions: An Expanded Gas-Grain Warm-up Chemical Model , 2008, 0803.1214.

[32]  V. Wakelam,et al.  Polycyclic Aromatic Hydrocarbons in Dense Cloud Chemistry , 2008, 0802.3757.

[33]  E. Herbst,et al.  Possible gas-phase syntheses for seven neutral molecules studied recently with the Green Bank Telescope , 2007 .

[34]  E. F. Dishoeck,et al.  Testing grain-surface chemistry in massive hot-core regions , 2007, astro-ph/0702066.

[35]  Anthony J. Remijan,et al.  Detection of Acetamide (CH3CONH2): The Largest Interstellar Molecule with a Peptide Bond , 2006 .

[36]  Q. Li,et al.  Direction Dynamics Study of the Hydrogen Abstraction Reaction CH2O + NH2 → CHO + NH3 , 2002 .

[37]  John A. Montgomery,et al.  A complete basis set model chemistry. VII. Use of the minimum population localization method , 2000 .

[38]  John A. Montgomery,et al.  A complete basis set model chemistry. V. Extensions to six or more heavy atoms , 1996 .

[39]  R. Bachiller,et al.  Ammonia emission from bow shocks in the L1157 outflow , 1995 .

[40]  B. Turner A molecular line survey of Sagittarius B2 and Orion-KL from 70 to 115 GHz. I - The observational data , 1989 .

[41]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .