A General Approach for Producing Hamiltonian Numerical Schemes for Fluid Equations

Given a fluid equation with reduced Lagrangian $l$ which is a functional of velocity $\MM{u}$ and advected density $D$ given in Eulerian coordinates, we give a general method for semidiscretising the equations to give a canonical Hamiltonian system; this system may then be integrated in time using a symplectic integrator. The method is Lagrangian, with the variables being a set of Lagrangian particle positions and their associated momenta. The canonical equations obtained yield a discrete form of Euler-Poincar\'e equations for $l$ when projected onto the grid, with a new form of discrete calculus to represent the gradient and divergence operators. Practical symplectic time integrators are suggested for a large family of equations which include the shallow-water equations, the EP-Diff equations and the 3D compressible Euler equations, and we illustrate the technique by showing results from a numerical experiment for the EP-Diff equations.

[1]  M. Oliver Variational asymptotics for rotating shallow water near geostrophy: a transformational approach , 2006, Journal of Fluid Mechanics.

[2]  Darryl D. Holm,et al.  Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation , 2003, nlin/0312048.

[3]  R. Practical use of Hamilton ’ s principle , 2005 .

[4]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics , 2005 .

[5]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[6]  Matthew West,et al.  Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations , 2004, Numerische Mathematik.

[7]  Jason Frank,et al.  On spurious reflections, nonuniform grids and finite difference discretizations of wave equations , 2004 .

[8]  Colin J. Cotter,et al.  Hamiltonian Particle-Mesh Method for Two-Layer Shallow-Water Equations Subject to the Rigid-Lid Approximation , 2004, SIAM J. Appl. Dyn. Syst..

[9]  S. Reich,et al.  The Hamiltonian particle‐mesh method for the spherical shallow water equations , 2004 .

[10]  Brian E. Moore,et al.  Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.

[11]  Brian E. Moore,et al.  Multi-symplectic integration methods for Hamiltonian PDEs , 2003, Future Gener. Comput. Syst..

[12]  Darryl D. Holm,et al.  Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..

[13]  Jason Frank,et al.  A Hamiltonian Particle-Mesh Method for the Rotating Shallow Water Equations , 2003 .

[14]  Darryl D. Holm Euler-Poincare Dynamics of Perfect Complex Fluids , 2001, nlin/0103041.

[15]  The Lagrangian Averaged Euler (LAE-α) Equations with Free-Slip or Mixed Boundary Conditions , 2002 .

[16]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[17]  J. Marsden,et al.  Global well–posedness for the Lagrangian averaged Navier–Stokes (LANS–α) equations on bounded domains , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[19]  Sebastian Reich,et al.  Finite Volume Methods for Multi-Symplectic PDES , 2000 .

[20]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[21]  S. Shkoller,et al.  THE VORTEX BLOB METHOD AS A SECOND-GRADE NON-NEWTONIAN FLUID , 1999, math/9910088.

[22]  J. Marsden,et al.  The geometry and analysis of the averaged Euler equations and a new diffeomorphism group , 1999, math/9908103.

[23]  S. Reich Backward Error Analysis for Numerical Integrators , 1999 .

[24]  Jerrold E. Marsden,et al.  The Euler-Poincaré Equations in Geophysical Fluid Dynamics , 1999, chao-dyn/9903035.

[25]  Darryl D. Holm Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion , 1999, chao-dyn/9903034.

[26]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[27]  Darryl D. Holm,et al.  Hamilton’s principle for quasigeostrophic motion , 1998, chao-dyn/9801018.

[28]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[29]  Ernst Hairer,et al.  The life-span of backward error analysis for numerical integrators , 1997 .

[30]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[31]  S. Reich Symplectic integration of constrained Hamiltonian systems by composition methods , 1996 .

[32]  L. Jay Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems , 1996 .

[33]  B. Leimkuhler,et al.  Symplectic Numerical Integrators in Constrained Hamiltonian Systems , 1994 .

[34]  G. Benettin,et al.  On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .

[35]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[36]  V. Zeitlin,et al.  Finite-mode analogs of 2D ideal hydrodynamics: coadjoint orbits and local canonical structure , 1991 .

[37]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[38]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[39]  P. Marcal,et al.  Introduction to the Finite-Element Method , 1973 .

[40]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[41]  Akopov Ss Fully nonlinear internal waves in a two-fluid system , 2022 .