Detection of viral RNAs at ambient temperature via reporter proteins produced through the target-splinted ligation of DNA probes

[1]  Richard J. R. Kelwick,et al.  Specific Nucleic AcId Ligation for the detection of Schistosomes: SNAILS , 2022, PLoS neglected tropical diseases.

[2]  Darius G. Rackus,et al.  Field validation of the performance of paper-based tests for the detection of the Zika and chikungunya viruses in serum samples , 2022, Nature Biomedical Engineering.

[3]  A. A. Bekhit,et al.  Snails , 2021, Alternative Proteins.

[4]  P. Baptista,et al.  Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard” , 2021, Frontiers in Sensors.

[5]  Jonghoo Lee,et al.  Comparing the diagnostic accuracy of rapid antigen detection tests to real time polymerase chain reaction in the diagnosis of SARS-CoV-2 infection: A systematic review and meta-analysis , 2021, Journal of Clinical Virology.

[6]  Bradley C. Bundy,et al.  Towards detection of SARS-CoV-2 RNA in human saliva: A paper-based cell-free toehold switch biosensor with a visual bioluminescent output , 2021, New Biotechnology.

[7]  Nicolaas M. Angenent-Mari,et al.  Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants , 2021, Science Advances.

[8]  Matthew C. Haines,et al.  Cell-free gene expression , 2021, Nature Reviews Methods Primers.

[9]  J. Collins,et al.  CRISPR-based diagnostics , 2021, Nature Biomedical Engineering.

[10]  Bradley C. Bundy,et al.  Rapid RNase inhibitor production to enable low‐cost, on‐demand cell‐free protein synthesis biosensor use in human body fluids , 2021, Biotechnology and bioengineering.

[11]  Nicolaas M. Angenent-Mari,et al.  Wearable materials with embedded synthetic biology sensors for biomolecule detection , 2021, Nature Biotechnology.

[12]  M. Karyana,et al.  Review of Current COVID-19 Diagnostics and Opportunities for Further Development , 2021, Frontiers in Medicine.

[13]  C. Denkinger,et al.  Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: A living systematic review and meta-analysis , 2021, medRxiv.

[14]  Martin Steinegger,et al.  Highly multiplexed oligonucleotide probe-ligation testing enables efficient extraction-free SARS-CoV-2 detection and viral genotyping , 2021, Modern Pathology.

[15]  Taylor J Moehling,et al.  LAMP Diagnostics at the Point-of-Care: Emerging Trends and Perspectives for the Developer Community , 2021, Expert review of molecular diagnostics.

[16]  Jeong Wook Lee,et al.  Sensitive fluorescence detection of SARS-CoV-2 RNA in clinical samples via one-pot isothermal ligation and transcription , 2020, Nature Biomedical Engineering.

[17]  J. Joung,et al.  Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing , 2020, The New England journal of medicine.

[18]  T. Yeh,et al.  Room Temperature Isothermal Colorimetric Padlock Probe Rolling Circle Amplification for Viral DNA and RNA Detection , 2020, bioRxiv.

[19]  K. Richter,et al.  Towards effective diagnostic assays for COVID-19: a review , 2020, Journal of Clinical Pathology.

[20]  Wei Guo,et al.  Advances in Cell‐Free Biosensors: Principle, Mechanism, and Applications , 2020, Biotechnology journal.

[21]  Guixia Yu,et al.  CRISPR-Cas12–based detection of SARS-CoV-2 , 2020, Nature Biotechnology.

[22]  Hao Yan,et al.  Precise and Programmable Detection of Mutations Using Ultraspecific Riboregulators , 2020, Cell.

[23]  Adam D. Silverman,et al.  Cell-free gene expression: an expanded repertoire of applications , 2019, Nature Reviews Genetics.

[24]  Monica P. McNerney,et al.  Point-of-care biomarker quantification enabled by sample-specific calibration , 2019, Science Advances.

[25]  Vincent Noireaux,et al.  Quantitative modeling of transcription and translation of an all-E. coli cell-free system , 2019, Scientific Reports.

[26]  S. Conn,et al.  SplintQuant: a method for accurately quantifying circular RNA transcript abundance without reverse transcription bias , 2019, RNA.

[27]  Nicole E. Gregorio,et al.  Escherichia coli-Based Cell-Free Protein Synthesis: Protocols for a robust, flexible, and accessible platform technology. , 2019, Journal of visualized experiments : JoVE.

[28]  L. Ying,et al.  A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection , 2018, Nature Communications.

[29]  P. Chu,et al.  A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection , 2018, Nature Communications.

[30]  Duo Ma,et al.  Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment , 2018, Synthetic biology.

[31]  Peter L. Voyvodic,et al.  Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors , 2018, bioRxiv.

[32]  James J Collins,et al.  A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers , 2018, Nature Communications.

[33]  H. Woodrow,et al.  : A Review of the , 2018 .

[34]  Jennifer A. Doudna,et al.  CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity , 2018, Science.

[35]  David W. Wood,et al.  Biosensing estrogenic endocrine disruptors in human blood and urine: A RAPID cell‐free protein synthesis approach , 2018, Toxicology and applied pharmacology.

[36]  Yuexi Li,et al.  Rapid and Visual Detection of Coxiella burnetii Using Recombinase Polymerase Amplification Combined with Lateral Flow Strips , 2018, BioMed research international.

[37]  James J. Collins,et al.  Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6 , 2018, Science.

[38]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[39]  Kris Zimmerman,et al.  CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide. , 2017, ACS chemical biology.

[40]  M. Nilsson,et al.  Fidelity of RNA templated end-joining by chlorella virus DNA ligase and a novel iLock assay with improved direct RNA detection accuracy , 2017, Nucleic acids research.

[41]  Joanne M Yeakley,et al.  A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling , 2017, PloS one.

[42]  Aviv Regev,et al.  Nucleic acid detection with CRISPR-Cas13a/C2c2 , 2017, Science.

[43]  Matthias Meier,et al.  Efficient in situ detection of mRNAs using the Chlorella virus DNA ligase for padlock probe ligation , 2017, RNA.

[44]  James J. Collins,et al.  Portable, On-Demand Biomolecular Manufacturing , 2016, Cell.

[45]  Michel G Bergeron,et al.  Recombinase Polymerase Amplification for Diagnostic Applications , 2016, Clinical chemistry.

[46]  Guillaume Lambert,et al.  Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components , 2016, Cell.

[47]  Weibo Cai,et al.  NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence. , 2016, Bioconjugate chemistry.

[48]  Marco Mignardi,et al.  Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ , 2015, Nucleic acids research.

[49]  J. Collins,et al.  Toehold Switches: De-Novo-Designed Regulators of Gene Expression , 2014, Cell.

[50]  James J. Collins,et al.  Paper-Based Synthetic Gene Networks , 2014, Cell.

[51]  Rebecca Richards-Kortum,et al.  Equipment-Free Incubation of Recombinase Polymerase Amplification Reactions Using Body Heat , 2014, PloS one.

[52]  R. Murray,et al.  Gene circuit performance characterization and resource usage in a cell-free "breadboard". , 2014, ACS synthetic biology.

[53]  Thomas C. Evans,et al.  Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase , 2013, Nucleic acids research.

[54]  Rui Gan,et al.  Cell-free protein synthesis: applications come of age. , 2012, Biotechnology advances.

[55]  Samuel Yang,et al.  PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings , 2004, The Lancet Infectious Diseases.

[56]  Takuya Ueda,et al.  Cell-free translation reconstituted with purified components , 2001, Nature Biotechnology.

[57]  U Landegren,et al.  A ligase-mediated gene detection technique. , 1988, Science.

[58]  OUP accepted manuscript , 2021, Clinical Chemistry.