Comprehensive theoretical and experimental investigation of the rotational impact energy harvester with the centrifugal softening effect

[1]  Hongkun Wu,et al.  Damage detection techniques for wind turbine blades: A review , 2020 .

[2]  G. Litak,et al.  Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping , 2020, Energy Conversion and Management.

[3]  Lihua Tang,et al.  Magnet-induced monostable nonlinearity for improving the VIV-galloping-coupled wind energy harvesting using combined cross-sectioned bluff body , 2020, Smart Materials and Structures.

[4]  Liya Zhao,et al.  Dynamics of the double-beam piezo–magneto–elastic nonlinear wind energy harvester exhibiting galloping-based vibration , 2020, Nonlinear Dynamics.

[5]  Wei-Hsin Liao,et al.  Self-powered smart watch and wristband enabled by embedded generator , 2020 .

[6]  Tsutomu Kaizuka,et al.  A tri-stable energy harvester in rotational motion: Modeling, theoretical analyses and experiments , 2020 .

[7]  Lihua Tang,et al.  Equivalent circuit representation of a vortex‐induced vibration‐based energy harvester using a semi‐empirical lumped parameter approach , 2020, International Journal of Energy Research.

[8]  W. Liao,et al.  A dual-effect solution for broadband piezoelectric energy harvesting , 2020 .

[9]  Yu Zhang,et al.  Design and Experimental Investigation of a Self-Tuning Piezoelectric Energy Harvesting System for Intelligent Vehicle Wheels , 2020, IEEE Transactions on Vehicular Technology.

[10]  Tian-bing Xu,et al.  Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism , 2019 .

[11]  Zhichun Yang,et al.  Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations , 2019, Complex..

[12]  W. Liao,et al.  Modeling and experimental validation on the interference of mechanical plucking energy harvesting , 2019, Mechanical Systems and Signal Processing.

[13]  Kexiang Wei,et al.  Mechanical modulations for enhancing energy harvesting: Principles, methods and applications , 2019 .

[14]  Daniil Yurchenko,et al.  A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting , 2019, Applied Physics Letters.

[15]  W. Liao,et al.  Asymmetric plucking bistable energy harvester: Modeling and experimental validation , 2019, Journal of Sound and Vibration.

[16]  K. Aw,et al.  A broadband electret-based vibrational energy harvester using soft magneto-sensitive elastomer with asymmetrical frequency response profile , 2019, Smart Materials and Structures.

[17]  Yanfei Jin,et al.  Stochastic dynamics of a piezoelectric energy harvester with correlated colored noises from rotational environment , 2019, Nonlinear Dynamics.

[18]  Gang Hu,et al.  Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference , 2019, Applied Physics Letters.

[19]  Wei-Hsin Liao,et al.  Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester , 2019, Nonlinear Dynamics.

[20]  Yimin Shao,et al.  Design, analysis and experimental study of a T-shaped piezoelectric energy harvester with internal resonance , 2019, Smart Materials and Structures.

[21]  Grzegorz Litak,et al.  Analytical analysis of the vibrational tristable energy harvester with a RL resonant circuit , 2019, Nonlinear Dynamics.

[22]  W. Qin,et al.  Scavenging wind energy by a dynamic-stable flutter energy harvester with rectangular wing , 2019, Applied Physics Letters.

[23]  Li-Qun Chen,et al.  Nonlinear energy sink with inerter , 2019, Mechanical Systems and Signal Processing.

[24]  Eric M. Yeatman,et al.  Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: Theoretical modelling and experimental validation , 2019, Mechanical Systems and Signal Processing.

[25]  Xinlei Fu,et al.  A music-box-like extended rotational plucking energy harvester with multiple piezoelectric cantilevers , 2019, Applied Physics Letters.

[26]  W. Liao,et al.  Modeling and Analysis of Piezoelectric Energy Harvesting With Dynamic Plucking Mechanism , 2019, Journal of Vibration and Acoustics.

[27]  Wenbin Huang,et al.  Theoretical analysis of an impact-bistable piezoelectric energy harvester , 2019, The European Physical Journal Plus.

[28]  Tsutomu Kaizuka,et al.  The benefits of an asymmetric tri-stable energy harvester in low-frequency rotational motion , 2019, Applied Physics Express.

[29]  Guang Meng,et al.  A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester , 2019, Applied Energy.

[30]  Lihua Tang,et al.  Dynamics and performance of a two degree-of-freedom galloping-based piezoelectric energy harvester , 2019, Smart Materials and Structures.

[31]  Weihua Li,et al.  Soft magneto-sensitive elastomer and polyvinylidene fluoride polymer based nonlinear piezoelectric energy harvesting: design, modelling and experiment , 2018, Smart Materials and Structures.

[32]  W. Stronge Impact Mechanics , 2018 .

[33]  Samir A. Emam,et al.  Exploiting the subharmonic parametric resonances of a buckled beam for vibratory energy harvesting , 2018, Meccanica.

[34]  Xinlei Fu,et al.  Nondimensional model and parametric studies of impact piezoelectric energy harvesting with dissipation , 2018, Journal of Sound and Vibration.

[35]  Wei Wang,et al.  Nonlinear dynamics and performance enhancement of asymmetric potential bistable energy harvesters , 2018, Nonlinear Dynamics.

[36]  Feng Qian,et al.  Theoretical modeling and experimental validation of a torsional piezoelectric vibration energy harvesting system , 2018 .

[37]  R. B. Davis,et al.  Nonlinear dynamics and triboelectric energy harvesting from a three-degree-of-freedom vibro-impact oscillator , 2018 .

[38]  R. B. Davis,et al.  Nonlinear dynamics and triboelectric energy harvesting from a three-degree-of-freedom vibro-impact oscillator , 2018, Nonlinear Dynamics.

[39]  Zhengbao Yang,et al.  Modeling and experimental validation of a buckled compressive-mode piezoelectric energy harvester , 2018, Nonlinear Dynamics.

[40]  Brian R. Mace,et al.  A comprehensive study of 2:1 internal-resonance-based piezoelectric vibration energy harvesting , 2018 .

[41]  Kexiang Wei,et al.  Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion , 2017 .

[42]  Guobiao Hu,et al.  A two-degree-of-freedom piezoelectric energy harvester with stoppers for achieving enhanced performance , 2017, International Journal of Mechanical Sciences.

[43]  Santiago Orrego,et al.  Harvesting ambient wind energy with an inverted piezoelectric flag , 2017 .

[44]  E. Yeatman,et al.  A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion , 2017 .

[45]  Kexiang Wei,et al.  A Compressive-Mode Wideband Vibration Energy Harvester Using a Combination of Bistable and Flextensional Mechanisms , 2016 .

[46]  D. Inman,et al.  Piezoelectric Energy Harvesting , 2016 .

[47]  Michele Pozzi,et al.  Magnetic plucking of piezoelectric bimorphs for a wearable energy harvester , 2016 .

[48]  Wei-Hsin Liao,et al.  Design and analysis of a piezoelectric energy harvester for rotational motion system , 2016 .

[49]  Abdessattar Abdelkefi,et al.  Modeling and Characterization of a Piezoelectric Energy Harvester Under Combined Aerodynamic and Base Excitations , 2015 .

[50]  Daniel J. Inman,et al.  Impact-induced high-energy orbits of nonlinear energy harvesters , 2015 .

[51]  A. Erturk,et al.  On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion , 2014 .

[52]  Jin-Chen Hsu,et al.  Analysis and experiment of self-frequency-tuning piezoelectric energy harvesters for rotational motion , 2014 .

[53]  Abdessattar Abdelkefi,et al.  Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations , 2014 .

[54]  Morteza Gharib,et al.  Flapping dynamics of an inverted flag , 2013, Journal of Fluid Mechanics.

[55]  M. Moallem,et al.  A Piezoelectric Energy Harvester for Rotary Motion Applications: Design and Experiments , 2013, IEEE/ASME Transactions on Mechatronics.

[56]  Miah A. Halim,et al.  Frequency up-converted wide bandwidth piezoelectric energy harvester using mechanical impact , 2013 .

[57]  Alper Erturk,et al.  Enhanced broadband piezoelectric energy harvesting using rotatable magnets , 2013 .

[58]  Yaowen Yang,et al.  A nonlinear piezoelectric energy harvester with magnetic oscillator , 2012 .

[59]  Chengkuo Lee,et al.  Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers , 2012 .

[60]  Marco Ferrari,et al.  Piezoelectric buckled beams for random vibration energy harvesting , 2012 .

[61]  R. Bishop,et al.  The Mechanics of Vibration , 2011 .

[62]  I. Kovacic,et al.  The Duffing Equation: Nonlinear Oscillators and their Behaviour , 2011 .

[63]  C. Livermore,et al.  Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation , 2011 .

[64]  Lei Gu,et al.  Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation , 2011, Microelectron. J..

[65]  E. D. Langre,et al.  Fluid-Structure Interactions: Cross-Flow-Induced Instabilities , 2010 .

[66]  J. Dugundji,et al.  Modeling and experimental verification of proof mass effects on vibration energy harvester performance , 2010 .

[67]  Chris Van Hoof,et al.  Corrigendum: Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator , 2009 .

[68]  Nesbitt W. Hagood,et al.  Modelling of Piezoelectric Actuator Dynamics for Active Structural Control , 1990 .

[69]  Y. Lee,et al.  The Lumped Parameter Method for Elastic Impact Problems , 1983 .

[70]  R. Clough,et al.  Dynamics Of Structures , 1975 .

[71]  M. A. Hariri-Ardebili,et al.  Fluid Structure Interactions , 2021, Aging, Shaking, and Cracking of Infrastructures.

[72]  I. Kovacic Nonlinear Oscillations , 2020 .

[73]  Lihua Tang,et al.  An impact-engaged two-degrees-of-freedom Piezoelectric Energy Harvester for Wideband Operation☆ , 2017 .

[74]  Muhammad R. Hajj,et al.  Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters , 2012 .

[75]  Lei Gu,et al.  Compact passively self-tuning energy harvesting for rotating applications , 2011 .

[76]  Sondipon Adhikari,et al.  A piezoelectric device for impact energy harvesting , 2011 .

[77]  C. van Hoof,et al.  Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator , 2009 .

[78]  J. Barbera,et al.  Contact mechanics , 1999 .