Abstract Glyphosate-resistant Palmer amaranth escaping residual herbicides is difficult to manage in cotton because of its rapid growth and a limited number of effective herbicide options to control emerged plants. An experiment was conducted at two dryland and two irrigated sites in Georgia during 2011 and 2012 to determine if cotton resistant to glyphosate, 2,4-D, and glufosinate could be used to salvage a crop infested with large Palmer amaranth. Three POST herbicide systems, including sequential applications of 2,4-D, sequential applications of 2,4-D plus glufosinate, or 2,4-D followed by (fb) glufosinate, were applied with intervals of 5, 10, or 15 d between POST applications. All three systems were followed by diuron plus MSMA directed at layby. At the dryland sites with high temperatures and drought conditions, no program provided greater than 90% control. However, the 2,4-D plus glufosinate system was at least twice as effective in controlling 20-cm-tall Palmer amaranth and produced at least three times more cotton than the other two systems, when pooled over POST application intervals. Intervals of 10 or 15 d between POST applications were 23 to 27% more effective than a 5-d interval in controlling Palmer amaranth when pooled over POST herbicide systems; yields were nearly twice as much with the 10-d interval compared to 5 d. At the irrigated site, overall weed control was greater with less treatment differences noted. Palmer amaranth that was 20 cm tall at application was controlled 98 to 99%, 92 to 93%, and 81 to 94% by glufosinate plus 2,4-D, 2,4-D fb glufosinate, and 2,4-D fb 2,4-D systems at harvest, respectively. Intervals between POST applications only influenced control by the POST 2,4-D system, and the 10-d interval was more effective than the 5-d interval. Carpetweed, Florida beggarweed, and smallflower morningglory were controlled 99% at harvest by all systems; however, it was noted that control of carpetweed and Florida beggarweed prior to layby was less effective with 2,4-D than systems including glufosinate. In the event of an at-plant residual herbicide failure in fields infested with glyphosate-resistant Palmer amaranth, our research demonstrates that glufosinate plus 2,4-D sequentially applied 10 to 15 d apart followed by a timely layby application controlled the target weeds in cotton with resistance to 2,4-D, glyphosate, and glufosinate. Nomenclature: 2,4-D; diuron; glufosinate; glyphosate; MSMA; carpetweed, Mollugo verticillata L. MOLVE; Florida beggarweed, Desmodium tortuosum [Sw] DC. DEDTO; Palmer amaranth, Amaranthus palmeri (S.) Wats. AMAPA; smallflower morningglory, Jacquemontia tamnifolia [L.] Griseb. IAQTA; cotton, Gossypium hirsutum L. Resumen En algodón y cuando escapa a herbicidas residuales, Amaranthus palmeri resistente a glyphosate es difícil de manejar debido a su rápido crecimiento y al limitado número de opciones de herbicidas efectivos para el control de plantas emergidas. Se realizó un experimento en dos sitios sin riego y en dos sitios con riego en Georgia en 2011 y 2012 para determinar si el algodón resistente a glyphosate, 2,4-D, y glufosinate podría ser usado para salvar a un cultivo infestado con plantas grandes de A. palmeri. Tres sistemas de herbicidas POST, los cuales incluyeron aplicaciones secuenciales de 2,4-D, aplicaciones secuenciales de 2,4-D más glufosinate, o 2,4-D seguido de (fb) glufosinate, fueron aplicados a intervalos de 5, 10 ó 15 d entre aplicaciones POST. Los tres sistemas fueron seguidos por diuron más MSMA dirigido antes del cierre del dosel. En los sitios sin riego, con altas temperaturas y condiciones de sequía, ningún programa brindó control superior a 90%. Sin embargo, el sistema de 2,4-D más glufosinate fue al menos el doble de efectivo controlando A. palmeri de 20 cm de altura y produjo al menos tres veces más algodón que los otros dos sistemas, cuando se promediaron los intervalos de aplicación POST. Los intervalos de 10 ó 15 d entre aplicaciones POST fueron 23 a 27% más efectivos que el intervalo de 5 d para el control de A. palmeri cuando se promediaron los sistemas de herbicidas POST. El rendimiento con el intervalo de 10 d fue casi el doble al compararse con el intervalo de 5 d. En el sitio con riego, el control de malezas fue en general mayor y se notaron menos diferencias entre tratamientos. A. palmeri que tenía 20 cm de altura al momento de aplicación fue controlado 98 a 99%, 92 a 93%, y 81 a 94% con los sistemas glufosinate más 2,4-D, 2,4-D fb glufosinate, y 2,4-D fb 2,4-D, respectivamente al momento de la cosecha. Los intervalos entre aplicaciones POST solamente influenciaron el control de los sistemas POST con 2,4-D, y el intervalo de 10 d fue más efectivo que el de 5 d. Mollugo verticillata, Desmodium tortuosum, y Jacquemontia tamnifolia fueron controlados 99% al momento de la cosecha en todos los sistemas. Sin embargo, se notó que el control de M. verticillata y D. tortuosum antes del cierre del dosel fue menos efectivo con 2,4-D que los sistemas que incluyeron glufosinate. En la eventualidad de una falla en el control residual al momento de la siembra, en campos infestados con A. palmeri resistente a glyphosate, nuestra investigación demuestra que glufosinate más 2,4-D aplicados secuencialmente 10 a 15 d aparte seguidos por una aplicación antes del cierre del dosel controló las malezas deseadas en algodón con resistencia a 2,4-D, glyphosate, y glufosinate.
[1]
J. M. Ellis,et al.
Influence of Herbicide Programs on Weed Management in Soybean with Resistance to Glufosinate and 2,4-D
,
2013,
Weed Technology.
[2]
W. G. Johnson,et al.
Summer Annual Weed Control with 2,4-D and Glyphosate
,
2012,
Weed Technology.
[3]
W. G. Johnson,et al.
Influence of Glyphosate or Glufosinate Combinations with Growth Regulator Herbicides and Other Agrochemicals in Controlling Glyphosate-Resistant Weeds
,
2012,
Weed Technology.
[4]
L. Sosnoskie.
CHANGES IN COTTON WEED MANAGEMENT PRACTICES FOLLOWING THE DEVELOPMENT OF GLYPHOSATE-RESISTANT PALMER AMARANTH
,
2012
.
[5]
Rebekah D. Wallace,et al.
Multiple Resistance in Palmer Amaranth to Glyphosate and Pyrithiobac Confirmed in Georgia
,
2011,
Weed Science.
[6]
R. Nichols,et al.
Glyphosate-resistant Palmer amaranth: A threat to conservation tillage
,
2011,
Journal of Soil and Water Conservation.
[7]
A. Culpepper,et al.
Weed Management with Glyphosate- and Glufosinate-Based Systems in PHY 485 WRF Cotton
,
2011,
Weed Technology.
[8]
P. Sikkema,et al.
Environment and Soil Conditions Influence Pre- and Postemergence Herbicide Efficacy in Soybean
,
2010,
Weed Technology.
[9]
Alan C. York,et al.
Glyphosate‐Resistant Palmer Amaranth in the United States
,
2010
.
[10]
David J Carpenter,et al.
Sublethal effects of the herbicide glufosinate ammonium on crops and wild plants: short-term effects compared to vegetative recovery and plant reproduction
,
2010,
Ecotoxicology.
[11]
A. Wise,et al.
Establishing the Geographical Distribution and Level of Acetolactate Synthase Resistance of Palmer Amaranth (Amaranthus palmeri) Accessions in Georgia
,
2009,
Weed Technology.
[12]
R. Farris,et al.
WEED SCIENCE Critical Timing of Palmer Amaranth (Amaranthus palmeri) Removal in Second-Generation Glyphosate-Resistant Cotton
,
2009
.
[13]
Christopher L. Main,et al.
Palmer Amaranth (Amaranthus palmeri) in Tennessee Has Low Level Glyphosate Resistance
,
2008,
Weed Technology.
[14]
Jason K. Norsworthy,et al.
Confirmation and Control of Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri) in Arkansas
,
2008,
Weed Technology.
[15]
G. Herzlinger,et al.
The use of fomesafen for pre-emergence weed control in cotton
,
1988,
Phytoparasitica.
[16]
J. Collins,et al.
Weed Control and Yield with Glufosinate-Resistant Cotton Weed Management Systems
,
2007,
Weed Technology.
[17]
Jerry W. Davis,et al.
Glyphosate-resistant Palmer amaranth (Amaranthus palmeri ) confirmed in Georgia
,
2006,
Weed Science.
[18]
A. C. York,et al.
WEED SCIENCE Management of Annual Grasses and Amaranthus spp. in Glufosinate-resistant Cotton
,
2006
.
[19]
Kenneth L. Smith,et al.
Comparison of Trifloxysulfuron and Pyrithiobac in Glyphosate-Resistant and Bromoxynil-Resistant Cotton1
,
2005,
Weed Technology.
[20]
A. C. York,et al.
Sicklepod (Senna obtusifolia) Control and Seed Production after 2,4-DB Applied Alone and with Fungicides or Insecticides1
,
2005,
Weed Technology.
[21]
J. Ferrell,et al.
Comparison of Glyphosate with Other Herbicides for Weed Control in Corn (Zea mays): Efficacy and Economics1
,
2002,
Weed Technology.
[22]
D. Peterson,et al.
Glufosinate Efficacy on Amaranthus Species in Glufosinate-Resistant Soybean (Glycine max)1
,
2002,
Weed Technology.
[23]
D. Shaw,et al.
Weed Control from Herbicide Combinations with Glyphosate1
,
2002,
Weed Technology.
[24]
J. Chandler,et al.
Competitive Impact of Palmer Amaranth (Amaranthus palmeri) on Cotton (Gossypium hirsutum) Development and Yield1
,
2001,
Weed Technology.
[25]
M. Patterson,et al.
Weed Management Programs for Glyphosate-Tolerant Cotton (Gossypium hirsutum)1
,
2001,
Weed Technology.
[26]
R. V. Baker,et al.
Palmer Amaranth (Amaranthus palmeri) Impacts on Yield, Harvesting, and Ginning in Dryland Cotton (Gossypium hirsutum)1
,
2000,
Weed Technology.
[27]
A. Culpepper,et al.
Weed Management in No-Tillage Bromoxynil-Tolerant Cotton (Gossypium hirsutum)
,
1997,
Weed Technology.
[28]
I. Heap.
International survey of herbicide-resistant weeds
,
1997
.