Detecting failure of climate predictions

This study shows how failure to capture system dynamics can be detected in climate model predictions. This information should improve model projections and facilitate better decision-making.

[1]  Kirk R. Klausmeyer,et al.  Resource management in a changing and uncertain climate , 2010 .

[2]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[3]  M. Holland,et al.  Arctic sea ice decline: Faster than forecast , 2007 .

[4]  R. Fletcher Practical Methods of Optimization , 1988 .

[5]  Nassim Nicholas Taleb,et al.  The Black Swan: The Impact of the Highly Improbable , 2007 .

[6]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[7]  L. H. Miller Table of Percentage Points of Kolmogorov Statistics , 1956 .

[8]  Eve McDonald-Madden,et al.  Optimal timing for managed relocation of species faced with climate change , 2011 .

[9]  Y. B. Wah,et al.  Power comparisons of Shapiro-Wilk , Kolmogorov-Smirnov , Lilliefors and Anderson-Darling tests , 2011 .

[10]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[11]  J. Hestbeck Response of northern pintail breeding populations to drought, 1961-92 , 1995 .

[12]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[13]  R. D'Agostino,et al.  Goodness-of-Fit-Techniques , 1987 .

[14]  S. Baird,et al.  The birds of North America , 1974 .

[15]  M. Holland,et al.  Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations , 2012 .

[16]  G. Jogesh Babu,et al.  Goodness-of-fit tests when parameters are estimated , 2004 .

[17]  Florence Fetterer,et al.  Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record , 2007, Annals of Glaciology.

[18]  Axel Schweiger,et al.  Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness , 2014 .

[19]  C. Pahl-Wostl,et al.  A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes , 2009 .

[20]  W. Easterling,et al.  Probabilistic projections of agro‐climate indices in North America , 2012 .

[21]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[22]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[23]  Donald A. Schön,et al.  Organizational Learning: A Theory Of Action Perspective , 1978 .

[24]  Steven C. Amstrup,et al.  Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence , 2010, Nature.

[25]  J. Kay,et al.  The Arctic’s rapidly shrinking sea ice cover: a research synthesis , 2012, Climatic Change.

[26]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[27]  F. Johnson,et al.  Uncertainty and the Adaptive Management of Waterfowl Harvests , 1996 .

[28]  Michael R. Miller,et al.  The northern pintail in North America: status and conservation needs of a struggling population , 1999 .

[29]  James D. Nichols,et al.  Conservation in the face of climate change: The roles of alternative models, monitoring, and adaptation in confronting and reducing uncertainty , 2011 .

[30]  Michael C Runge,et al.  Climate change threatens polar bear populations: a stochastic demographic analysis. , 2010, Ecology.

[31]  A. Dawid,et al.  On Testing the Validity of Sequential Probability Forecasts , 1993 .