Elucidating reaction mechanisms on quantum computers

Significance Our work addresses the question of compelling killer applications for quantum computers. Although quantum chemistry is a strong candidate, the lack of details of how quantum computers can be used for specific applications makes it difficult to assess whether they will be able to deliver on the promises. Here, we show how quantum computers can be used to elucidate the reaction mechanism for biological nitrogen fixation in nitrogenase, by augmenting classical calculation of reaction mechanisms with reliable estimates for relative and activation energies that are beyond the reach of traditional methods. We also show that, taking into account overheads of quantum error correction and gate synthesis, a modular architecture for parallel quantum computers can perform such calculations with components of reasonable complexity. With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

[1]  Markus Reiher,et al.  Automated Identification of Relevant Frontier Orbitals for Chemical Compounds and Processes. , 2017, Chimia.

[2]  M. Reiher,et al.  Measuring multi-configurational character by orbital entanglement , 2016, 1609.02617.

[3]  Nathan Wiebe,et al.  Bounding the costs of quantum simulation of many-body physics in real space , 2016, 1608.05696.

[4]  Daisuke Shiomi,et al.  Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules. , 2016, The journal of physical chemistry. A.

[5]  Markus Reiher,et al.  Uncertainty quantification for quantum chemical models of complex reaction networks. , 2016, Faraday discussions.

[6]  Simon J. Devitt,et al.  The Path to Scalable Distributed Quantum Computing , 2016, Computer.

[7]  Qiming Sun,et al.  A Practical Guide to Density Matrix Embedding Theory in Quantum Chemistry. , 2016, Journal of chemical theory and computation.

[8]  Rebecca K. Carlson,et al.  Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table , 2016, J. Comput. Chem..

[9]  Markus Reiher,et al.  Automated Selection of Active Orbital Spaces. , 2016, Journal of chemical theory and computation.

[10]  R Hanson,et al.  Optimized quantum sensing with a single electron spin using real-time adaptive measurements. , 2015, Nature nanotechnology.

[11]  Nathan Wiebe,et al.  Efficient Bayesian Phase Estimation. , 2015, Physical review letters.

[12]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[13]  Matthew B. Hastings,et al.  Hybrid quantum-classical approach to correlated materials , 2015, 1510.03859.

[14]  Markus Reiher,et al.  Heuristics-Guided Exploration of Reaction Mechanisms. , 2015, Journal of chemical theory and computation.

[15]  Andrew W. Cross,et al.  Doubled Color Codes , 2015, 1509.03239.

[16]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[17]  Peter Pulay,et al.  Selection of active spaces for multiconfigurational wavefunctions. , 2015, The Journal of chemical physics.

[18]  M. Hastings,et al.  Solving strongly correlated electron models on a quantum computer , 2015, 1506.05135.

[19]  Alán Aspuru-Guzik,et al.  Exponentially more precise quantum simulation of fermions II: Quantum chemistry in the CI matrix representation , 2015 .

[20]  Annie Y. Wei,et al.  Exponentially more precise quantum simulation of fermions in second quantization , 2015, 1506.01020.

[21]  Tomasz A Wesolowski,et al.  Frozen-Density Embedding Strategy for Multilevel Simulations of Electronic Structure. , 2015, Chemical reviews.

[22]  Markus Reiher,et al.  Density matrix renormalization group with efficient dynamical electron correlation through range separation. , 2015, The Journal of chemical physics.

[23]  D. Rees,et al.  Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein , 2015, Acta crystallographica. Section D, Biological crystallography.

[24]  David McKinnon,et al.  Exact synthesis of single-qubit unitaries over Clifford-cyclotomic gate sets , 2015, 1501.04944.

[25]  Caiping Liu,et al.  Influence of the density functional and basis set on the relative stabilities of oxygenated isomers of diiron models for the active site of [FeFe]-hydrogenase. , 2015, Journal of chemical theory and computation.

[26]  M. Freedman,et al.  Majorana zero modes and topological quantum computation , 2015, npj Quantum Information.

[27]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[28]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..

[29]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[30]  Peter Selinger,et al.  Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..

[31]  Arieh Warshel,et al.  Multiscale Modeling of Biological Functions: From Enzymes to Molecular Machines (Nobel Lecture) , 2014 .

[32]  Alán Aspuru-Guzik,et al.  On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation , 2014, 1410.8159.

[33]  Arieh Warshel,et al.  Multiscale modeling of biological functions: from enzymes to molecular machines (Nobel Lecture). , 2014, Angewandte Chemie.

[34]  Martin Rötteler,et al.  Efficient synthesis of probabilistic quantum circuits with fallback , 2014, ArXiv.

[35]  Alán Aspuru-Guzik,et al.  Exploiting Locality in Quantum Computation for Quantum Chemistry. , 2014, The journal of physical chemistry letters.

[36]  Christoph R. Jacob,et al.  Subsystem density‐functional theory , 2014 .

[37]  K. Hodgson,et al.  Biosynthesis of nitrogenase metalloclusters. , 2014, Chemical reviews.

[38]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[39]  Markus Reiher,et al.  New Benchmark Set of Transition-Metal Coordination Reactions for the Assessment of Density Functionals. , 2014, Journal of chemical theory and computation.

[40]  Dennis R. Dean,et al.  Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage , 2014, Chemical reviews.

[41]  M. Reiher,et al.  Determining factors for the accuracy of DMRG in chemistry. , 2014, Chimia.

[42]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[43]  D. Cory,et al.  Hamiltonian learning and certification using quantum resources. , 2013, Physical review letters.

[44]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[45]  Matthew B. Hastings,et al.  Faster phase estimation , 2013, Quantum Inf. Comput..

[46]  Nathan Wiebe,et al.  Floating point representations in quantum circuit synthesis , 2013, 1305.5528.

[47]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[48]  Y. Gurevich,et al.  Efficient decomposition of single-qubit gates intoVbasis circuits , 2013, 1303.1411.

[49]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[50]  Nathan Wiebe,et al.  Robust online Hamiltonian learning , 2012, TQC.

[51]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[52]  John S. Anderson Catalytic conversion of nitrogen to ammonia by an iron model complex , 2013 .

[53]  Alán Aspuru-Guzik,et al.  Faster quantum chemistry simulation on fault-tolerant quantum computers , 2012 .

[54]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[55]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[56]  M. Reiher,et al.  Spin in density‐functional theory , 2012, 1206.2234.

[57]  George A. Hagedorn,et al.  A note on the switching adiabatic theorem , 2012, 1204.2318.

[58]  Rodney Van Meter,et al.  Faster quantum chemistry simulation on fault-tolerant quantum computers , 2012, 1204.0567.

[59]  Adrian J Mulholland,et al.  Taking Ockham's razor to enzyme dynamics and catalysis. , 2012, Nature chemistry.

[60]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[61]  Nathan J DeYonker,et al.  Toward accurate theoretical thermochemistry of first row transition metal complexes. , 2012, The journal of physical chemistry. A.

[62]  B. Sanders,et al.  Quantum-circuit design for efficient simulations of many-body quantum dynamics , 2011, 1108.4318.

[63]  N. Wiebe,et al.  Improved error-scaling for adiabatic quantum evolutions , 2011, 1105.6268.

[64]  D. Rees,et al.  Evidence for Interstitial Carbon in Nitrogenase FeMo Cofactor , 2011, Science.

[65]  Frank Neese,et al.  X-ray Emission Spectroscopy Evidences a Central Carbon in the Nitrogenase Iron-Molybdenum Cofactor , 2011, Science.

[66]  P. Høyer,et al.  Improved error bounds for the adiabatic approximation , 2011, 1103.4174.

[67]  Y. Miyake,et al.  A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. , 2011, Nature chemistry.

[68]  J. Whitfield,et al.  Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.

[69]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[70]  Jacob Kongsted,et al.  Molecular Properties through Polarizable Embedding , 2011 .

[71]  Barry C. Sanders,et al.  Simulating quantum dynamics on a quantum computer , 2010, 1011.3489.

[72]  Alexander Hentschel,et al.  Machine learning for precise quantum measurement. , 2009, Physical review letters.

[73]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[74]  Donald G Truhlar,et al.  Density functional theory for transition metals and transition metal chemistry. , 2009, Physical chemistry chemical physics : PCCP.

[75]  H. M. Wiseman,et al.  How to perform the most accurate possible phase measurements , 2009, 0907.0014.

[76]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[77]  M. A. Martin-Delgado,et al.  Quantum measurements and gates by code deformation , 2007, 0704.2540.

[78]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[79]  Daniel A. Lidar,et al.  Adiabatic approximation with exponential accuracy for many-body systems and quantum computation , 2008, 0808.2697.

[80]  Alán Aspuru-Guzik,et al.  Quantum algorithm for obtaining the energy spectrum of molecular systems. , 2008, Physical chemistry chemical physics : PCCP.

[81]  Michele Mosca,et al.  Optimal phase estimation in quantum networks , 2007, 0706.4412.

[82]  Julien Toulouse,et al.  On the universality of the long-/short-range separation in multiconfigurational density-functional theory. , 2007, The Journal of chemical physics.

[83]  E. Knill,et al.  Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.

[84]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[85]  A. Warshel,et al.  Transition state theory can be used in studies of enzyme catalysis: lessons from simulations of tunnelling and dynamical effects in lipoxygenase and other systems , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[86]  R. Schrock,et al.  Catalytic reduction of dinitrogen to ammonia at a single molybdenum center , 2005, Proceedings of the National Academy of Sciences.

[87]  M. Nielsen,et al.  The Solovay-Kitaev algorithm , 2005, Quantum Inf. Comput..

[88]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[89]  Andrew W. Cross,et al.  A quantum logic array microarchitecture: scalable quantum data movement and computation , 2005, 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'05).

[90]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[91]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[92]  Kwang S. Kim,et al.  Theory and applications of computational chemistry : the first forty years , 2005 .

[93]  D. Rees,et al.  Nitrogenase MoFe-Protein at 1.16 Å Resolution: A Central Ligand in the FeMo-Cofactor , 2002, Science.

[94]  Daniel A. Lidar,et al.  Polynomial-time simulation of pairing models on a quantum computer. , 2001, Physical review letters.

[95]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[96]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[97]  M. Ratner Molecular electronic-structure theory , 2000 .

[98]  Daniel A. Lidar,et al.  Calculating the thermal rate constant with exponential speedup on a quantum computer , 1998, quant-ph/9807009.

[99]  Christof Zalka Simulating quantum systems on a quantum computer , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[100]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[101]  Howard Mark Wiseman,et al.  Adaptive single-shot phase measurements: A semiclassical approach , 1997 .

[102]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[103]  Christof Zalka,et al.  Efficient Simulation of Quantum Systems by Quantum Computers , 1998 .

[104]  J. Malrieu,et al.  An iterative difference-dedicated configuration interaction. Proposal and test studies , 1995 .

[105]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[106]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[107]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[108]  D C Rees,et al.  Structural models for the metal centers in the nitrogenase molybdenum-iron protein. , 1992, Science.

[109]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[110]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[111]  Peter Pulay,et al.  The unrestricted natural orbital–complete active space (UNO–CAS) method: An inexpensive alternative to the complete active space–self‐consistent‐field (CAS–SCF) method , 1989 .

[112]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[113]  Peter Pulay,et al.  UHF natural orbitals for defining and starting MC‐SCF calculations , 1988 .

[114]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.