Epigenetic dynamics of centromeres and neocentromeres in Cryptococcus deuterogattii

Deletion of native centromeres in the human fungal pathogen Cryptococcus deuterogattii leads to neocentromere formation. Native centromeres span truncated transposable elements, while neocentromeres do not and instead span actively expressed genes. To explore the epigenetic organization of neocentromeres, we analyzed the distribution of the heterochromatic histone modification H3K9me2, 5mC DNA methylation and the euchromatin mark H3K4me2. Native centromeres are enriched for both H3K9me2 and 5mC DNA methylation marks and are devoid of H3K4me2, while neocentromeres do not exhibit any of these features. Neocentromeres in cen10Δ mutants are unstable and chromosome-chromosome fusions occur. After chromosome fusion, the neocentromere is inactivated and the native centromere of the chromosome fusion partner remains as the sole, active centromere. In the present study, the active centromere of a fused chromosome was deleted to investigate if epigenetic memory promoted the re-activation of the inactive neocentromere. Our results show that the inactive neocentromere is not re-activated and instead a novel neocentromere forms directly adjacent to the deleted centromere of the fused chromosome. To study the impact of transcription on centromere stability, the actively expressed URA5 gene was introduced into the CENP-A bound regions of a native centromere. The introduction of the URA5 gene led to a loss of CENP-A from the native centromere, and a neocentromere formed adjacent to the native centromere location. Remarkably, the inactive, native centromere remained enriched for heterochromatin, yet the integrated gene was expressed and devoid of H3K9me2. A cumulative analysis of multiple CENP-A distribution profiles revealed centromere drift in C. deuterogattii, a previously unreported phenomenon in fungi. The CENP-A-binding shifted within the ORF-free regions and showed a possible association with a truncated transposable element. Taken together, our findings reveal that neocentromeres in C. deuterogattii are highly unstable and are not marked with an epigenetic memory, distinguishing them from native centromeres.

[1]  Christina A. Cuomo,et al.  Application of an optimized annotation pipeline to the Cryptococcus deuterogattii genome reveals dynamic primary metabolic gene clusters and genomic impact of RNAi loss , 2020, bioRxiv.

[2]  K. Sanyal,et al.  Implications of the Evolutionary Trajectory of Centromeres in the Fungal Kingdom. , 2020, Annual review of microbiology.

[3]  J. Heitman,et al.  Factors enforcing the species boundary between the human pathogens Cryptococcus neoformans and Cryptococcus deneoformans , 2020, bioRxiv.

[4]  M. Koch,et al.  Genome Evolution in Arabideae Was Marked by Frequent Centromere Repositioning , 2020, Plant Cell.

[5]  J. Heitman,et al.  Centromere scission drives chromosome shuffling and reproductive isolation , 2019, Proceedings of the National Academy of Sciences.

[6]  J. Heitman,et al.  Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages , 2019, bioRxiv.

[7]  J. Pritchard,et al.  Evolutionary Persistence of DNA Methylation for Millions of Years after Ancient Loss of a De Novo Methyltransferase , 2019, Cell.

[8]  J. Berman,et al.  Chromatin Profiling of the Repetitive and Nonrepetitive Genomes of the Human Fungal Pathogen Candida albicans , 2018, mBio.

[9]  J. Heitman,et al.  Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres , 2019, Current Biology.

[10]  A. Sanyal,et al.  Cis- and Trans-chromosomal Interactions Define Pericentric Boundaries in the Absence of Conventional Heterochromatin , 2019, Genetics.

[11]  Sarah L. Williams,et al.  Targeting the trypanosome kinetochore with CLK1 protein kinase inhibitors , 2019, bioRxiv.

[12]  J. Heitman,et al.  Centromere deletion in Cryptococcus deuterogattii leads to neocentromere formation and chromosome fusions , 2019, bioRxiv.

[13]  T. Itoh,et al.  3D genomic architecture reveals that neocentromeres associate with heterochromatin regions , 2019, The Journal of cell biology.

[14]  V. Barra,et al.  The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA , 2018, Nature Communications.

[15]  Joseph G. Mccarter,et al.  Birth, evolution, and transmission of satellite-free mammalian centromeric domains , 2018, Genome research.

[16]  Christina A. Cuomo,et al.  RNAi is a critical determinant of centromere evolution in closely related fungi , 2018, Proceedings of the National Academy of Sciences.

[17]  H. Badali,et al.  Importance of Resolving Fungal Nomenclature: the Case of Multiple Pathogenic Species in the Cryptococcus Genus , 2017, mSphere.

[18]  B. Snel,et al.  Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics , 2017, EMBO reports.

[19]  R. Dawe,et al.  Stable centromere positioning in diverse sequence contexts of complex and satellite centromeres of maize and wild relatives , 2017, Genome Biology.

[20]  J. Heitman,et al.  Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in Cryptococcus deuterogattii , 2017, bioRxiv.

[21]  Carl Baker,et al.  The birth of a human-specific neural gene by incomplete duplication and gene fusion , 2017, Genome Biology.

[22]  Winston Timp,et al.  Detecting DNA cytosine methylation using nanopore sequencing , 2017, Nature Methods.

[23]  A. Fujiyama,et al.  Constitutive centromere-associated network controls centromere drift in vertebrate cells , 2017, The Journal of cell biology.

[24]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[25]  Maitreya J. Dunham,et al.  Neocentromeres Provide Chromosome Segregation Accuracy and Centromere Clustering to Multiple Loci along a Candida albicans Chromosome , 2016, PLoS genetics.

[26]  P. Straight,et al.  Bacterial Communities: Interactions to Scale , 2016, Front. Microbiol..

[27]  L. Rusche,et al.  The Chromatin of Candida albicans Pericentromeres Bears Features of Both Euchromatin and Heterochromatin , 2016, Front. Microbiol..

[28]  M. Freitag The kinetochore interaction network (KIN) of ascomycetes , 2016, Mycologia.

[29]  J. Berman,et al.  Candida albicans repetitive elements display epigenetic diversity and plasticity , 2016, Scientific Reports.

[30]  J. Heitman,et al.  Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex , 2016, PLoS genetics.

[31]  R. Siddharthan,et al.  Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis , 2016, PLoS genetics.

[32]  Takuya Kubo,et al.  Acentric chromosome ends are prone to fusion with functional chromosome ends through a homology-directed rearrangement , 2015, Nucleic acids research.

[33]  E. Stukenbrock,et al.  Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes , 2015, Epigenetics & Chromatin.

[34]  Christina A. Cuomo,et al.  Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii , 2015, mBio.

[35]  Carolin A. Müller,et al.  Discovery of an Unconventional Centromere in Budding Yeast Redefines Evolution of Point Centromeres , 2015, Current Biology.

[36]  E. Stukenbrock,et al.  Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). , 2015, Fungal genetics and biology : FG & B.

[37]  J. Yates,et al.  Product Binding Enforces the Genomic Specificity of a Yeast Polycomb Repressive Complex , 2015, Cell.

[38]  K. Bloom,et al.  Lessons learned from counting molecules: how to lure CENP-A into the kinetochore , 2014, Open Biology.

[39]  K. Sullivan,et al.  Centromere sliding on a mammalian chromosome , 2014, Chromosoma.

[40]  S. Henikoff,et al.  Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects , 2014, eLife.

[41]  W. Earnshaw,et al.  The Centromere: Chromatin Foundation for the Kinetochore Machinery , 2014, Developmental cell.

[42]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[43]  Jacqueline E. Schein,et al.  Analysis of the Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation , 2014, PLoS genetics.

[44]  K. Gull,et al.  Discovery of Unconventional Kinetochores in Kinetoplastids , 2014, Cell.

[45]  K. C. Scott,et al.  Neocentromeres: a place for everything and everything in its place. , 2014, Trends in genetics : TIG.

[46]  U. Güldener,et al.  Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites , 2013, PLoS pathogens.

[47]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[48]  J. Thakur,et al.  Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans , 2013, Genome research.

[49]  Hiroshi Kimura,et al.  Chromosome Engineering Allows the Efficient Isolation of Vertebrate Neocentromeres , 2013, Developmental cell.

[50]  Yong Zhang,et al.  Identifying ChIP-seq enrichment using MACS , 2012, Nature Protocols.

[51]  M. Vainstein,et al.  Zap1 Regulates Zinc Homeostasis and Modulates Virulence in Cryptococcus gattii , 2012, PloS one.

[52]  J. Heitman,et al.  Transgene Induced Co-Suppression during Vegetative Growth in Cryptococcus neoformans , 2012, PLoS genetics.

[53]  S. Saitoh,et al.  Epigenetic Inactivation and Subsequent Heterochromatinization of a Centromere Stabilize Dicentric Chromosomes , 2012, Current Biology.

[54]  C. Sullivan,et al.  Heterochromatin Is Required for Normal Distribution of Neurospora crassa CenH3 , 2011, Molecular and Cellular Biology.

[55]  J. Heitman,et al.  Characterizing the role of RNA silencing components in Cryptococcus neoformans. , 2010, Fungal genetics and biology : FG & B.

[56]  B. Langmead,et al.  Aligning Short Sequencing Reads with Bowtie , 2010, Current protocols in bioinformatics.

[57]  J. Heitman,et al.  Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi. , 2010, Genes & development.

[58]  A. Jauch,et al.  Telomere Disruption Results in Non-Random Formation of De Novo Dicentric Chromosomes Involving Acrocentric Human Chromosomes , 2010, PLoS genetics.

[59]  P. Warburton,et al.  A paucity of heterochromatin at functional human neocentromeres , 2010, Epigenetics & Chromatin.

[60]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[61]  James A. Birchler,et al.  Reactivation of an Inactive Centromere Reveals Epigenetic and Structural Components for Centromere Specification in Maize[W] , 2009, The Plant Cell Online.

[62]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[63]  J. Berman,et al.  Neocentromeres Form Efficiently at Multiple Possible Loci in Candida albicans , 2009, PLoS genetics.

[64]  J. Heitman,et al.  Phylogeny and Phenotypic Characterization of Pathogenic Cryptococcus Species and Closely Related Saprobic Taxa in the Tremellales , 2009, Eukaryotic Cell.

[65]  R. Siddharthan,et al.  Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis , 2008, Proceedings of the National Academy of Sciences.

[66]  Y. Hiraoka,et al.  Heterochromatin Integrity Affects Chromosome Reorganization After Centromere Dysfunction , 2008, Science.

[67]  Takeshi Urano,et al.  Heterochromatin and RNAi Are Required to Establish CENP-A Chromatin at Centromeres , 2008, Science.

[68]  M. Baum,et al.  Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity , 2007, Molecular Genetics and Genomics.

[69]  William A. Richardson,et al.  Plasticity of Fission Yeast CENP-A Chromatin Driven by Relative Levels of Histone H3 and H4 , 2007, PLoS genetics.

[70]  M. Baum,et al.  Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Ira M. Hall,et al.  Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi , 2002, Science.

[72]  P. R. Kraus,et al.  A PCR-based strategy to generate integrative targeting alleles with large regions of homology. , 2002, Microbiology.

[73]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[74]  R. Allshire,et al.  Distinct protein interaction domains and protein spreading in a complex centromere. , 2000, Genes & development.

[75]  J. Walton,et al.  A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum. , 1996, Microbiology.

[76]  R. Allshire,et al.  Position effect variegation at fission yeast centromeres , 1994, Cell.

[77]  Rapid Evolution , 2022, American Scientist.

[78]  M. Freitag,et al.  Centrochromatin of Fungi. , 2017, Progress in molecular and subcellular biology.

[79]  M. Ogawa,et al.  Genetic analysis of conidiation regulatory pathways in koji-mold Aspergillus oryzae. , 2010, Fungal genetics and biology : FG & B.

[80]  P. Jeffrey,et al.  Regulation of Heterochromatic Silencing and Histone H 3 Lysine-9 Methylation by RNAi , 2002 .