Internal Calculi for Separation Logics

We present a general approach to axiomatise separation logics with heaplet semantics with no external features such as nominals/labels. To start with, we design the first (internal) Hilbert-style axiomatisation for the quantifier-free separation logic. We instantiate the method by introducing a new separation logic with essential features: it is equipped with the separating conjunction, the predicate ls, and a natural guarded form of first-order quantification. We apply our approach for its axiomatisation. As a by-product of our method, we also establish the exact expressive power of this new logic and we show PSpace-completeness of its satisfiability problem.

[1]  Jonathan M. Spring,et al.  Why Separation Logic Works , 2019 .

[2]  John C. Reynolds,et al.  Separation logic: a logic for shared mutable data structures , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[3]  Stéphane Demri,et al.  The Effects of Adding Reachability Predicates in Propositional Separation Logic , 2018, FoSSaCS.

[4]  Didier Galmiche,et al.  Tableaux and Resource Graphs for Separation Logic , 2010, J. Log. Comput..

[5]  Nicolas Peltier,et al.  The Bernays-Schönfinkel-Ramsey Class of Separation Logic on Arbitrary Domains , 2019, FoSSaCS.

[6]  Stéphane Demri,et al.  Separation logics and modalities: a survey , 2015, J. Appl. Non Class. Logics.

[7]  Joël Ouaknine,et al.  Tractable Reasoning in a Fragment of Separation Logic , 2011, CONCUR.

[8]  James Brotherston,et al.  Bunched Logics Displayed , 2012, Studia Logica.

[9]  Alessio Mansutti Extending Propositional Separation Logic for Robustness Properties , 2018, FSTTCS.

[10]  Stéphane Demri,et al.  Axiomatising Logics with Separating Conjunction and Modalities , 2019, JELIA.

[11]  Peter W. O'Hearn,et al.  A Decidable Fragment of Separation Logic , 2004, FSTTCS.

[12]  Igor Walukiewicz,et al.  Guarded fixed point logic , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[13]  Igor Walukiewicz,et al.  Completeness of Kozen's Axiomatisation of the Propositional µ-Calculus , 2000, Inf. Comput..

[14]  Ruzica Piskac,et al.  Automating Separation Logic Using SMT , 2013, CAV.

[15]  Hongseok Yang,et al.  Local reasoning for stateful programs , 2001 .

[16]  Peter W. O'Hearn,et al.  BI as an assertion language for mutable data structures , 2001, POPL '01.

[17]  Stéphane Demri,et al.  Separation Logic with One Quantified Variable , 2016, Theory of Computing Systems.

[18]  Peter W. O'Hearn,et al.  Computability and Complexity Results for a Spatial Assertion Language for Data Structures , 2001, APLAS.

[19]  Marius Bozga,et al.  Quantitative Separation Logic and Programs with Lists , 2008, Journal of Automated Reasoning.

[20]  Dominique Larchey-Wendling,et al.  Expressivity properties of boolean BI through relational models , 2006 .

[21]  Rajeev Goré,et al.  Modular Labelled Sequent Calculi for Abstract Separation Logics , 2017, ACM Trans. Comput. Log..

[22]  Maarten Marx,et al.  Hybrid logics: characterization, interpolation and complexity , 2001, Journal of Symbolic Logic.

[23]  Simon Docherty,et al.  Modular Tableaux Calculi for Separation Theories , 2018, FoSSaCS.

[24]  James Brotherston,et al.  On the Complexity of Pointer Arithmetic in Separation Logic (an extended version) , 2018, APLAS.

[25]  Amina Doumane,et al.  Constructive completeness for the linear-time μ-calculus , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[26]  James Brotherston,et al.  Undecidability of Propositional Separation Logic and Its Neighbours , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[27]  James Brotherston,et al.  Parametric completeness for separation theories , 2014, POPL.

[28]  S. Presentation Separation logic preserves the expressive power of classical logic , 2003 .

[29]  David J. Pym,et al.  The semantics and proof theory of the logic of bunched implications , 2002, Applied logic series.

[30]  Valentin Goranko,et al.  Complete axiomatization and decidability of Alternating-time temporal logic , 2006, Theor. Comput. Sci..

[31]  Peter W. O'Hearn,et al.  The Logic of Bunched Implications , 1999, Bulletin of Symbolic Logic.

[32]  Philippa Gardner,et al.  From Separation Logic to First-Order Logic , 2005, FoSSaCS.

[33]  Alwen Tiu,et al.  Completeness for a First-Order Abstract Separation Logic , 2016, APLAS.

[34]  Martin Lück,et al.  Axiomatizations of Team Logics , 2016, Ann. Pure Appl. Log..