Models and Methods in Biomathematics, Tools of automatic control and scientific computing

[1]  M. Langlais,et al.  Predicting the emergence of human hantavirus disease using a combination of viral dynamics and rodent demographic patterns , 2006, Epidemiology and Infection.

[2]  A. Ramos,et al.  Factorization of second-order elliptic boundary value problems by dynamic programming , 2004 .

[3]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[4]  Nicola Bellomo,et al.  A Survey of Models for Tumor-Immune System Dynamics , 1996 .

[5]  M. Langlais,et al.  Invading introduced species in insular heterogeneous environments , 2005 .

[6]  W. Fitzgibbon,et al.  An application of homogenization techniques to population dynamics models , 2001 .

[8]  Fabien Crauste,et al.  Global stability of a partial differential equation with distributed delay due to cellular replication , 2003, 0904.2472.

[9]  Eventually uniform bounds for a class of quasipositive reaction diffusion systems , 1999 .

[10]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[11]  M. Langlais,et al.  Internal Stabilizability of Some Diffusive Models , 2002 .

[12]  P Auger,et al.  Dynamics of a feline virus with two transmission modes within exponentially growing host populations , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[13]  Denis Thiéry,et al.  Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts , 2005, Oecologia.

[14]  Mimmo Iannelli,et al.  Mathematical Theory of Age-Structured Population Dynamics , 1995 .

[15]  Mazen Saad,et al.  On some anisotropic reaction-diffusion systems with L1-data modeling the propagation of an epidemic disease , 2003 .

[16]  Michel Langlais,et al.  A reaction-diffusion system modeling direct and indirect transmission of diseases , 2004 .

[17]  W. Fitzgibbon,et al.  Modeling the Circulation of a Disease Between Two Host Populations on non Coincident Spatial Domains , 2005, Biological Invasions.

[18]  J. Burie,et al.  Modeling of the Invasion of a Fungal Disease over a Vineyard , 2008 .

[19]  Un modèle non-linéaire de prolifération cellulaire : extinction des cellules et invariance , 2003, 0904.2471.

[20]  W. Fitzgibbon,et al.  A mathematical model for indirectly transmitted diseases. , 2007, Mathematical biosciences.

[21]  Mostafa Adimy,et al.  Bohr–Neugebauer type theorem for some partial neutral functional differential equations , 2007 .

[22]  Stacie A. Toal,et al.  Dissemination , 2021, Manual for the Production of Statistics on the Digital Economy – 2020 Revised Edition.

[23]  Existence and uniqueness of solutions for a diffusion model of host-parasite dynamics , 2003 .

[24]  M. Langlais,et al.  A mathematical analysis of a predator-prey system in a highly heterogeneous environment , 2002 .

[25]  G. Sugihara,et al.  Control of rabbits to protect island birds from cat predation , 1999 .

[27]  Andrei Halanay,et al.  Stability of limit cycles in a pluripotent stem cell dynamics model , 2006, 0904.2494.

[28]  J. Moreau,et al.  Grape variety affects larval performance and also female reproductive performance of the European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae) , 2006, Bulletin of Entomological Research.

[29]  Michel Langlais,et al.  A marine host–parasite model with direct biological cycle and age structure , 1998 .

[30]  S. I. Rubinow,et al.  A mathematical model of neutrophil production and control in normal man , 1975, Journal of mathematical biology.

[31]  M C Mackey,et al.  Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. , 1978, Blood.

[32]  J. Burie,et al.  Singular Perturbation Analysis of Travelling Waves for a Model in Phytopathology , 2006 .

[33]  Michel Langlais,et al.  Pathogens can Slow Down or Reverse Invasion Fronts of their Hosts , 2005, Biological Invasions.

[34]  Fabien Crauste,et al.  Existence, positivity and stability for a nonlinear model of cellular proliferation , 2005, 0904.2473.