Gibbs Markov random fields with continuous values based on the modified planar rotator model

We introduce a novel Gibbs Markov random field for spatial data on Cartesian grids based on the modified planar rotator (MPR) model of statistical physics. The MPR captures spatial correlations using nearest-neighbor interactions of continuously-valued spins and does not rely on Gaussian assumptions. The only model parameter is the reduced temperature, which we estimate by means of an ergodic specific energy matching principle. We propose an efficient hybrid Monte Carlo simulation algorithm that leads to fast relaxation of the MPR model and allows vectorization. Consequently, the MPR computational time for inference and simulation scales approximately linearly with system size. This makes it more suitable for big data sets, such as satellite and radar images, than conventional geostatistical approaches. The performance (accuracy and computational speed) of the MPR model is validated with conditional simulation of Gaussian synthetic and non-Gaussian real data (atmospheric heat release measurements and Walker-lake DEM-based concentrations) and comparisons with standard gap-filling methods.

[1]  Martin Weigel,et al.  Performance potential for simulating spin models on GPU , 2010, J. Comput. Phys..

[2]  S. SIAMJ. SPARTAN GIBBS RANDOM FIELD MODELS FOR GEOSTATISTICAL APPLICATIONS∗ , 2003 .

[3]  Julian D. Marshall,et al.  Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area , 2013 .

[4]  Jirí Kadlec,et al.  Using crowdsourced and weather station data to fill cloud gaps in MODIS snow cover datasets , 2017, Environ. Model. Softw..

[5]  Francisco J. Jiménez-Hornero,et al.  Using general-purpose computing on graphics processing units (GPGPU) to accelerate the ordinary kriging algorithm , 2014, Comput. Geosci..

[6]  Edzer J. Pebesma,et al.  Multivariable geostatistics in S: the gstat package , 2004, Comput. Geosci..

[7]  Brian Eder,et al.  Spatio-temporal characterization of tropospheric ozone across the eastern United States , 2004 .

[8]  Douglas W. Nychka,et al.  Covariance Tapering for Likelihood-Based Estimation in Large Spatial Data Sets , 2008 .

[9]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[10]  Jin Li,et al.  Spatial interpolation methods applied in the environmental sciences: A review , 2014, Environ. Model. Softw..

[11]  Bo Hu,et al.  Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data , 2017, Comput. Geosci..

[12]  J. Inoue,et al.  Multistate image restoration by transmission of bit-decomposed data. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[14]  Mario Chica-Olmo,et al.  Geostatistics with the Matern semivariogram model: A library of computer programs for inference, kriging and simulation , 2008, Comput. Geosci..

[15]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[16]  Edzer Pebesma,et al.  Spatio-Temporal Interpolation using gstat , 2016, R J..

[17]  D. Shadwick,et al.  Effects of missing seasonal data on estimates of period means of dry and wet deposition , 2007 .

[18]  Fox,et al.  Phase transition in the 2D XY model. , 1988, Physical review letters.

[19]  J. Inoue,et al.  Image restoration using the Q-Ising spin glass. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Marguerite Madden,et al.  Holes in the ocean: Filling voids in bathymetric lidar data , 2011, Comput. Geosci..

[21]  J. Marshall,et al.  Remote sensing of exposure to NO2: satellite versus ground based measurement in a large urban area , 2013 .

[22]  M. Tanemura,et al.  Likelihood Estimation of Directional Interaction , 1994 .

[23]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[24]  Katakami Shun,et al.  Gaussian Markov Random Field Model without Boundary Conditions , 2017 .

[25]  M. Zukovic,et al.  Reconstruction of missing data in remote sensing images using conditional stochastic optimization with global geometric constraints , 2013, Stochastic Environmental Research and Risk Assessment.

[26]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[27]  Tangpei Cheng,et al.  Accelerating universal Kriging interpolation algorithm using CUDA-enabled GPU , 2013, Comput. Geosci..

[28]  Dan Cornford,et al.  Fast algorithms for automatic mapping with space-limited covariance functions , 2008 .

[29]  Klaus Holliger,et al.  Kriging and Conditional Geostatistical Simulation Based on Scale-Invariant Covariance Models , 2003 .

[30]  H. Nishimori,et al.  Statistical mechanics of image restoration and error-correcting codes. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  B. Minasny,et al.  The Matérn function as a general model for soil variograms , 2005 .

[32]  Mario Chica-Olmo,et al.  MLMATERN: A computer program for maximum likelihood inference with the spatial Matérn covariance model , 2009, Comput. Geosci..

[33]  Dionissios T. Hristopulos,et al.  Analytic Properties and Covariance Functions for a New Class of Generalized Gibbs Random Fields , 2006, IEEE Transactions on Information Theory.

[34]  M. Zukovic,et al.  Multilevel discretized random field models with ‘spin’ correlations for the simulation of environmental spatial data , 2008, 0809.3918.

[35]  R. Bilonick An Introduction to Applied Geostatistics , 1989 .

[36]  Application of the quantum spin glass theory to image restoration. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Ana Cortés,et al.  Parallel ordinary kriging interpolation incorporating automatic variogram fitting , 2011, Comput. Geosci..

[38]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[39]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[40]  Yi Liu,et al.  A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations , 2012, Environ. Model. Softw..

[41]  D. Nychka,et al.  Covariance Tapering for Interpolation of Large Spatial Datasets , 2006 .

[42]  Allison Kealy,et al.  Stream Kriging: Incremental and recursive ordinary Kriging over spatiotemporal data streams , 2016, Comput. Geosci..

[43]  M. Grunwald Principles Of Condensed Matter Physics , 2016 .

[44]  Ziad S. Haddad,et al.  Retrieval of Latent Heating from TRMM Measurements , 2006 .

[45]  Milan Zukovic,et al.  Classification of missing values in spatial data using spin models. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Denis Marcotte,et al.  Half-tapering strategy for conditional simulation with large datasets , 2016, Stochastic Environmental Research and Risk Assessment.

[47]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[48]  Edzer Pebesma,et al.  GSTAT: a program for geostatistical modelling, prediction and simulation , 1998 .

[49]  Ronald R. Horgan,et al.  The effective permeability of a random medium , 1987 .

[50]  Masato Okada,et al.  Markov-random-field modeling for linear seismic tomography. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Creutz,et al.  Overrelaxation and Monte Carlo simulation. , 1987, Physical review. D, Particles and fields.

[52]  N. Cressie Fitting variogram models by weighted least squares , 1985 .

[53]  Dionissios T. Hristopulos,et al.  Stochastic Local Interaction (SLI) model: Bridging machine learning and geostatistics , 2015, Comput. Geosci..

[54]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[55]  Yue Sun,et al.  Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China , 2009, Environ. Model. Softw..

[56]  Eunho Ha,et al.  Sampling error of areal average rainfall due to radar partial coverage , 2008 .

[57]  M. Zukovic,et al.  Short-range correlations in modified planar rotator model , 2015, 1504.03211.

[58]  D. Sandwell BIHARMONIC SPLINE INTERPOLATION OF GEOS-3 AND SEASAT ALTIMETER DATA , 1987 .

[59]  H. Nishimori,et al.  Error-correcting codes and image restoration with multiple stages of dynamics , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[60]  D. Hristopulos,et al.  A Directional Gradient-Curvature method for gap filling of gridded environmental spatial data with potentially anisotropic correlations , 2013, 1303.0191.

[61]  Hongda Hu,et al.  An improved coarse-grained parallel algorithm for computational acceleration of ordinary Kriging interpolation , 2015, Comput. Geosci..

[62]  H. Nishimori,et al.  Statistical Mechanics of Image Restoration by the Plane Rotator Model , 2002 .

[63]  M. Zukovic,et al.  XY model with higher-order exchange. , 2017, Physical review. E.