Knowledge discovery in object-oriented databases: the first step

Object-oriented database system has become increasingly popular and influential in the development of new generation database systems. This motivates the investigation of mechanisms for data mining in object-oriented databases. In this paper, we propose our first step towards knowledge discovery in object-oriented databases by extension of the attribute-oriented induction technique from relational databases to object-oriented databases. By the development of sophisticated generalization operators and generalization control mechanisms, attribute-oriented induction method can be successfully extended to knowledge discovery in object-oriented databases. Furthermore, we show that knowledge discovery will substantially enhance the power and flexibility of querying data and knowledge in object-oriented databases.

[1]  Stanley B. Zdonik,et al.  A query algebra for object-oriented databases , 1990, [1990] Proceedings. Sixth International Conference on Data Engineering.

[2]  Abraham Silberschatz,et al.  A Multi-Resolution Relational Data Model , 1992, VLDB.

[3]  Jiawei Han,et al.  Knowledge Discovery in Databases: An Attribute-Oriented Approach , 1992, VLDB.

[4]  Douglas H. Fisher,et al.  Improving Inference through Conceptual Clustering , 1987, AAAI.

[5]  Amihai Motro,et al.  Querying database knowledge , 1990, SIGMOD '90.

[6]  Won Kim,et al.  Introduction to Object-Oriented Databases , 1991, Computer systems.

[7]  R. G. Cattell Object Data Management: Object-Oriented and Extended , 1994 .

[8]  R. G. G. Cattell,et al.  Object Data Management: Object-Oriented and Extended Relational Database Systems (Revised Edition) , 1991 .

[9]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[10]  Amedeo Napoli,et al.  Object Oriented Languages , 1991 .

[11]  Michael R. Genesereth,et al.  Logical foundations of artificial intelligence , 1987 .

[12]  Gregory Piatetsky-Shapiro,et al.  Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.

[13]  Olivia R. Liu Sheng,et al.  An object-oriented methodology for knowledge base/database coupling , 1992, CACM.

[14]  Ryszard S. Michalski,et al.  A theory and methodology of inductive learning , 1993 .

[15]  Won Kim,et al.  Object-Oriented Concepts, Databases, and Applications , 1989 .

[16]  Brian R. Gaines,et al.  Knowledge acquisition for knowledge-based systems , 1991, IEEE Expert.

[17]  Michel Manago,et al.  Induction of Decision Trees from Complex Structured Data , 1991, Knowledge Discovery in Databases.

[18]  Deborah L. McGuinness,et al.  CLASSIC: a structural data model for objects , 1989, SIGMOD '89.

[19]  François Bancilhon,et al.  Building an Object-Oriented Database System, The Story of O2 , 1992 .

[20]  Linda K. Cook Book review: INTELLIGENT DATABASES: OBJECT-ORIENTED, DEDUCTIVE HYPERMEDIA TECHNOLOGIES by K. Parsaye, M. Chignell, S. Khoshafian & H. Wong (John Wiley & Sons, Inc., 1989) , 1990, SGCH.

[21]  William Frawley,et al.  Knowledge Discovery in Databases , 1991 .

[22]  Michael Kifer,et al.  Querying object-oriented databases , 1992, SIGMOD '92.

[23]  Larry Kerschberg,et al.  Mining for Knowledge in Databases: Goals and General Description of the INLEN System , 1989, Knowledge Discovery in Databases.

[24]  Michael Stonebraker,et al.  Database systems: achievements and opportunities , 1990, SGMD.

[25]  Jan M. Zytkow,et al.  Interactive Mining of Regularities in Databases , 1991, Knowledge Discovery in Databases.

[26]  Jack A. Orenstein,et al.  Query processing in the ObjectStore database system , 1992, SIGMOD '92.