Stochastic Simulation on Integer Constraint Sets

Bounds are given on the number of steps sufficient for convergence of simulation algorithms on domains of nonnegative integer constraint sets.

[1]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[2]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[3]  B. Gidas Nonstationary Markov chains and convergence of the annealing algorithm , 1985 .

[4]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[5]  S. Ingrassia ON THE RATE OF CONVERGENCE OF THE METROPOLIS ALGORITHM AND GIBBS SAMPLER BY GEOMETRIC BOUNDS , 1994 .

[6]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[7]  O. Catoni Applications of sharp large deviations estimates to optimal cooling schedules , 1991 .

[8]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[9]  Ellis L. Johnson Integer programming : facets, subadditivity, and duality for group and semi-group problems , 1980 .

[10]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[11]  A. Trouvé Rough Large Deviation Estimates for the Optimal Convergence Speed Exponent of Generalized Simulated , 1994 .

[12]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  L. Miclo,et al.  Remarques sur l’hypercontractivité et l’évolution de l’entropie pour des chaînes de Markov finies , 1997 .

[14]  D. Stroock,et al.  Simulated annealing via Sobolev inequalities , 1988 .

[15]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[16]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[17]  Herbert S. Wilf,et al.  Generating functionology , 1990 .

[18]  P. Diaconis,et al.  Nash inequalities for finite Markov chains , 1996 .