Stochastic Simulation on Integer Constraint Sets
暂无分享,去创建一个
[1] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[2] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[3] B. Gidas. Nonstationary Markov chains and convergence of the annealing algorithm , 1985 .
[4] P. Diaconis,et al. Algebraic algorithms for sampling from conditional distributions , 1998 .
[5] S. Ingrassia. ON THE RATE OF CONVERGENCE OF THE METROPOLIS ALGORITHM AND GIBBS SAMPLER BY GEOMETRIC BOUNDS , 1994 .
[6] Bruce E. Hajek,et al. Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..
[7] O. Catoni. Applications of sharp large deviations estimates to optimal cooling schedules , 1991 .
[8] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[9] Ellis L. Johnson. Integer programming : facets, subadditivity, and duality for group and semi-group problems , 1980 .
[10] P. Diaconis,et al. Geometric Bounds for Eigenvalues of Markov Chains , 1991 .
[11] A. Trouvé. Rough Large Deviation Estimates for the Optimal Convergence Speed Exponent of Generalized Simulated , 1994 .
[12] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] L. Miclo,et al. Remarques sur l’hypercontractivité et l’évolution de l’entropie pour des chaînes de Markov finies , 1997 .
[14] D. Stroock,et al. Simulated annealing via Sobolev inequalities , 1988 .
[15] P. A. P. Moran,et al. An introduction to probability theory , 1968 .
[16] William H. Press,et al. Numerical Recipes in C, 2nd Edition , 1992 .
[17] Herbert S. Wilf,et al. Generating functionology , 1990 .
[18] P. Diaconis,et al. Nash inequalities for finite Markov chains , 1996 .