Fully solution-processed organic solar cells on metal foil substrates

We demonstrate fully solution-processed organic photovoltaic cells on metal foil substrates with power conversion efficiencies similar to those obtained in devices on transparent substrates. The cells are based on the regioregular poly- (3-hexylthiophene) and C61 butyric acid methyl ester bulk heterojunction system. The bottom electrode is a silver film whose workfunction is lowered by Cs2CO3 using spin-coating to serve as a cathode. The transparent top anode consists of a conductive polymer in combination with a solution-processed silver nanowire mesh that is laminated onto the devices. Each layer of the device, including the transparent electrode, is fabricated from solution, giving rise to the possibility of completely printed solar cells on low-cost substrates.

[1]  Peter Peumans,et al.  An effective light trapping configuration for thin-film solar cells , 2007 .

[2]  Michael Niggemann,et al.  Organic solar cells using inverted layer sequence , 2005 .

[3]  M. Bergsmann,et al.  Reel‐to‐reel Vacuum Metallization , 2006 .

[4]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[5]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[6]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[7]  T. Nyberg An alternative method to build organic photodiodes , 2004 .

[8]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[9]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[10]  Gang Li,et al.  Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene) , 2005 .

[11]  David L. Carroll,et al.  High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends , 2005 .

[12]  K. Zweibel,et al.  Thin film PV manufacturing: Materials costs and their optimization , 2000 .

[13]  Gang Li,et al.  Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer , 2008 .

[14]  Takayuki Kuwabara,et al.  Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer , 2008 .

[15]  Christoph J. Brabec,et al.  Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact , 2006 .

[16]  N. Koura,et al.  Electroless plating of silver. , 1985 .

[17]  Christoph J. Brabec,et al.  Interface modification for highly efficient organic photovoltaics , 2008 .

[18]  Viktor Andersson,et al.  Folded reflective tandem polymer solar cell doubles efficiency , 2007 .

[19]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[20]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[21]  S. Park,et al.  Mechanical Stability of Externally Deformed Indium–Tin–Oxide Films on Polymer Substrates , 2003 .

[22]  J. Meiss,et al.  Improved light harvesting in tin-doped indum oxide (ITO)-free inverted bulk-heterojunction organic solar cells using capping layers , 2008 .

[23]  H. Inoue,et al.  Mirror-bright silver plating from a cyanide-free bath , 1998 .

[24]  D. Khang,et al.  The surface engineering of top electrode in inverted polymer bulk-heterojunction solar cells , 2008 .

[25]  A. Abbott,et al.  Electropolishing of stainless steel in an ionic liquid , 2005 .