CO2 separation using thin film composite membranes of acid-hydrolyzed PIM-1

[1]  P. Budd,et al.  Crosslinking of Branched PIM-1 and PIM-Py Membranes for Recovery of Toluene from Dimethyl Sulfoxide by Pervaporation , 2023, ACS applied polymer materials.

[2]  P. Budd,et al.  Methanol Vapor Retards Aging of PIM-1 Thin Film Composite Membranes in Storage , 2023, ACS macro letters.

[3]  G. He,et al.  Coordination-driven structure reconstruction in polymer of intrinsic microporosity membranes for efficient propylene/propane separation , 2022, Innovation (Cambridge (Mass.)).

[4]  S. Kentish,et al.  The impact of water, BTEX compounds and ethylene glycol on the performance of perfluoro(butenyl vinyl ether) based membranes for CO2 capture from natural gas , 2022, Journal of Membrane Science.

[5]  Can Wang,et al.  Ladder polymers of intrinsic microporosity from superacid-catalyzed Friedel-Crafts polymerization for membrane gas separation , 2022, Journal of Membrane Science.

[6]  Chang Soo Lee,et al.  In-situ formation of asymmetric thin-film, mixed-matrix membranes with ZIF-8 in dual-functional imidazole-based comb copolymer for high-performance CO2 capture , 2022, Journal of Membrane Science.

[7]  Dan Zhao,et al.  Induced Polymer Crystallinity in Mixed Matrix Membranes by Metal-Organic Framework Nanosheets for Gas Separation , 2022, Journal of Membrane Science Letters.

[8]  Yifu Ding,et al.  Effect of Branch Length on the Structural and Separation Properties of Hyperbranched Poly(1,3-dioxolane) , 2021, Macromolecules.

[9]  Tai‐Shung Chung,et al.  Supramolecular Polymer Network Membranes with Molecular-Sieving Nanocavities for Efficient Pre-Combustion CO2 Capture. , 2021, Small methods.

[10]  Jong Gyu Oh,et al.  Facile suppression of intensified plasticization in glassy polymer thin films towards scalable composite membranes for propylene/propane separation , 2021, Journal of Membrane Science.

[11]  S. Kentish,et al.  Gas sorption and diffusion in perfluoro(butenyl vinyl ether) based perfluoropolymeric membranes , 2021, Journal of Membrane Science.

[12]  Fan Yang,et al.  Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance , 2021 .

[13]  Tae-Hyun Kim,et al.  PIM-PI-1 and Poly(ethylene glycol)/Poly(propylene glycol)-Based Mechanically Robust Copolyimide Membranes with High CO2-Selectivity and an Anti-aging Property: A Joint Experimental-Computational Exploration. , 2021, ACS applied materials & interfaces.

[14]  Masakoto Kanezashi,et al.  Boosting the CO2 capture efficiency through aromatic bridged organosilica membranes , 2021, Journal of Membrane Science.

[15]  S. Kentish,et al.  Gas separation performance of copolymers of perfluoro(butenyl vinyl ether) and perfluoro(2,2-dimethyl-1,3-dioxole) , 2021 .

[16]  Yatao Zhang,et al.  Amidoxime modified polymers of intrinsic microporosity/alginate composite hydrogel beads for efficient adsorption of cationic dyes from aqueous solution. , 2021, Journal of colloid and interface science.

[17]  Xiaohua Ma,et al.  Facile synthesis of Bi-functionalized intrinsic microporous polymer with fully carbon backbone for gas separation application , 2021, Separation and Purification Technology.

[18]  Joshua S. McNally,et al.  Molecular design and fabrication of PIM-1/polyphosphazene blend membranes with high performance for CO2/N2 separation , 2021 .

[19]  P. Budd,et al.  Influence of Polymer Topology on Gas Separation Membrane Performance of the Polymer of Intrinsic Microporosity PIM-Py , 2021 .

[20]  W. Ho,et al.  Polymeric membranes for CO2 separation and capture , 2021 .

[21]  O. Farha,et al.  Postsynthetically Modified Polymers of Intrinsic Microporosity (PIMs) for Capturing Toxic Gases. , 2021, ACS applied materials & interfaces.

[22]  C. Doherty,et al.  Leveraging free volume manipulation to improve membrane separation performance of amine-functionalized PIM-1. , 2020, Angewandte Chemie.

[23]  Rong Wu,et al.  Synthesis of high-performance Co-based ZIF-67 membrane for H2 separation by using cobalt ions chelated PIM-1 as interface layer , 2020 .

[24]  P. Webley,et al.  High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes , 2020 .

[25]  P. Budd,et al.  Mitigation of physical aging with mixed matrix membranes based on crosslinked PIM-1 fillers and PIM-1. , 2020, ACS applied materials & interfaces.

[26]  P. Budd,et al.  Recovery of free volume in PIM-1 membranes through alcohol vapor treatment , 2020, Frontiers of Chemical Science and Engineering.

[27]  C. Doherty,et al.  Facile and Time-Efficient Carboxylic Acid Functionalization of PIM-1: Effect on Molecular Packing and Gas Separation Performance , 2020 .

[28]  Omid T. Qazvini,et al.  Effective enhancement of selectivities and capacities for CO 2 over CH 4 and N 2 of polymers of intrinsic microporosity via postsynthesis metalation , 2020 .

[29]  Bekir Satilmis Amidoxime Modified Polymers of Intrinsic Microporosity (PIM-1); A Versatile Adsorbent for Efficient Removal of Charged Dyes; Equilibrium, Kinetic and Thermodynamic Studies , 2020, Journal of Polymers and the Environment.

[30]  P. Budd,et al.  Understanding the Topology of the Polymer of Intrinsic Microporosity PIM-1: Cyclics, Tadpoles, and Network Structures and Their Impact on Membrane Performance , 2020 .

[31]  J. Lai,et al.  A review of polymeric composite membranes for gas separation and energy production , 2019, Progress in Polymer Science.

[32]  M. Ferrari,et al.  Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity , 2019, Energy & Environmental Science.

[33]  P. Webley,et al.  Postcombustion Carbon Capture Using Thin-Film Composite Membranes. , 2019, Accounts of chemical research.

[34]  Yufeng Zhang,et al.  Hierarchical Porous and Zinc-Ion-Crosslinked PIM-1 Nanocomposite as a CO2 Cycloaddition Catalyst with High Efficiency. , 2019, ChemSusChem.

[35]  Gongpin Liu,et al.  High‐Performance CO2 Capture through Polymer‐Based Ultrathin Membranes , 2019, Advanced Functional Materials.

[36]  P. Budd,et al.  Synergistic enhancement of gas selectivity in thin film composite membranes of PIM-1 , 2019, Journal of Materials Chemistry A.

[37]  P. Webley,et al.  Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture , 2019, Journal of Membrane Science.

[38]  M. Guiver,et al.  Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes , 2018, Nature Materials.

[39]  P. Webley,et al.  Ultrathin Metal-Organic Framework Nanosheets as a Gutter Layer for Flexible Composite Gas Separation Membranes. , 2018, ACS nano.

[40]  P. Budd,et al.  Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation , 2018, Journal of Membrane Science.

[41]  A. Livingston,et al.  Roll-to-roll dip coating of three different PIMs for Organic Solvent Nanofiltration , 2018, Journal of Membrane Science.

[42]  P. Thomas,et al.  Effective Conversion of Amide to Carboxylic Acid on Polymers of Intrinsic Microporosity (PIM-1) with Nitrous Acid , 2018, Membranes.

[43]  I. Pinnau,et al.  High-Pressure CO2 Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement. , 2018, ACS applied materials & interfaces.

[44]  Youngjae Yoo,et al.  Highly Carboxylate-Functionalized Polymers of Intrinsic Microporosity for CO2-Selective Polymer Membranes , 2017 .

[45]  B. Freeman,et al.  Physical aging, CO2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1) , 2017 .

[46]  Christopher R. Mason,et al.  Effect of physical aging on the gas transport and sorption in PIM-1 membranes , 2017 .

[47]  I. Leung,et al.  A Critical Update on the Synthesis of Carboxylated Polymers of Intrinsic Microporosity (C-PIMs) , 2017 .

[48]  Liling Zhang,et al.  Effects of hydrolyzed PIM-1 in polyimide-based membranes on C2–C4 alcohols dehydration via pervaporation , 2017 .

[49]  G. Qiao,et al.  CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture , 2016 .

[50]  J. Lai,et al.  Metal ion modified PIM-1 and its application for propylene/propane separation , 2016 .

[51]  X. Tan,et al.  High performance post-modified polymers of intrinsic microporosity (PIM-1) membranes based on multivalent metal ions for gas separation , 2016 .

[52]  P. Budd,et al.  Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes , 2016, Scientific Reports.

[53]  G. Qiao,et al.  A novel cross-linked nano-coating for carbon dioxide capture , 2016 .

[54]  Q. Zhang,et al.  Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol , 2015 .

[55]  Z. Bao,et al.  Chiral polymers of intrinsic microporosity: selective membrane permeation of enantiomers. , 2015, Angewandte Chemie.

[56]  I. Pinnau,et al.  Physical Aging, Plasticization and Their Effects on Gas Permeation in "Rigid" Polymers of Intrinsic Microporosity , 2015 .

[57]  B. Freeman,et al.  Gas permeation in thin films of “high free-volume” glassy perfluoropolymers: Part II. CO2 plasticization and sorption , 2015 .

[58]  P. Budd,et al.  Base-catalysed hydrolysis of PIM-1: amide versus carboxylate formation , 2014 .

[59]  A. Cheetham,et al.  Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes , 2014, Nature Communications.

[60]  Y. Tong,et al.  Molecular interaction, gas transport properties and plasticization behavior of cPIM-1/Torlon blend membranes , 2014 .

[61]  Pei Li,et al.  Temperature dependence of gas sorption and permeation in PIM-1 , 2014 .

[62]  P. Budd,et al.  Aging and Free Volume in a Polymer of Intrinsic Microporosity (PIM-1) , 2012 .

[63]  E. Hertwich,et al.  CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming , 2011 .

[64]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[65]  Neil B. McKeown,et al.  Exploitation of Intrinsic Microporosity in Polymer-Based Materials , 2010 .

[66]  Jingshe Song,et al.  High-Performance Carboxylated Polymers of Intrinsic Microporosity (PIMs) with Tunable Gas Transport Properties† , 2009 .

[67]  H. Damon Matthews,et al.  The proportionality of global warming to cumulative carbon emissions , 2009, Nature.

[68]  L. Robeson,et al.  The upper bound revisited , 2008 .

[69]  N. Du,et al.  Linear High Molecular Weight Ladder Polymer via Fast Polycondensation of 5,5′,6,6′‐Tetrahydroxy‐3,3,3′,3′‐tetramethylspirobisindane with 1,4‐Dicyanotetrafluorobenzene , 2008 .

[70]  K. Nagai,et al.  Influence of methanol conditioning and physical aging on carbon spin-lattice relaxation times of poly(1-trimethylsilyl-1-propyne) , 2004 .

[71]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. , 2004, Chemical communications.

[72]  Matthias Wessling,et al.  Accelerated plasticization of thin-film composite membranes used in gas separation , 2001 .

[73]  P. Budd,et al.  Thin film nanocomposite membranes of superglassy PIM-1 and amine-functionalised 2D fillers for gas separation , 2022, Journal of Materials Chemistry A.

[74]  P. Budd,et al.  Importance of small loops within PIM-1 topology on gas separation selectivity in thin film composite membranes , 2021, Journal of Materials Chemistry A.

[75]  Kelvin O. Yoro,et al.  CO2 emission sources, greenhouse gases, and the global warming effect , 2020 .