Provably Good Mesh Generation

Several versions of the problem of generating triangular meshes for finite-element methods are studied. It is shown how to triangulate a planar point set or a polygonally bounded domain with triangles of bounded aspect ratio, how to triangulate a planar point set with triangles having no obtuse angles, how to triangulate a point set in arbitrary dimension with simplices of bounded aspect ratio, and how to produce a linear-size Delaunay triangulation of a multidimensional point set by adding a linear number of extra points. All the triangulations have size within a constant factor of optimal and run in optimal time O(n log n+k) with input of size n and output of size k. No previous work on mesh generation simultaneously guarantees well-shaped elements and small total size. >

[1]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[2]  Barry Joe Finite element triangulation of complex regions using computational geometry , 1984 .

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  David M. Mount,et al.  Globally-Equiangular triangulations of co-circular points in 0(n log n) time , 1988, SCG '88.

[5]  Bernard Chazelle,et al.  Triangulating a non-convex polytype , 1989, SCG '89.

[6]  David Eppstein,et al.  Polynomial-size nonobtuse triangulation of polygons , 1991, SCG '91.

[7]  Mark S. Shephard,et al.  Approaches to the Automatic Generation and Control of Finite Element Meshes , 1988 .

[8]  W. C. Thacker,et al.  A brief review of techniques for generating irregular computational grids , 1980 .

[9]  Tiow Seng Tan,et al.  An O(n2log n) time algorithm for the MinMax angle triangulation , 1990, SCG '90.

[10]  Gary L. Miller,et al.  Separators in two and three dimensions , 1990, STOC '90.

[11]  D. Rose,et al.  Generalized nested dissection , 1977 .

[12]  Errol L. Lloyd On triangulations of a set of points in the plane , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[13]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[14]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[15]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[16]  I. Fried Condition of finite element matrices generated from nonuniform meshes. , 1972 .

[17]  David Eppstein,et al.  Approximating the minimum weight triangulation , 1992, SODA '92.

[18]  L. Paul Chew,et al.  Guaranteed-Quality Triangular Meshes , 1989 .

[19]  D. T. Lee,et al.  Generalized delaunay triangulation for planar graphs , 1986, Discret. Comput. Geom..

[20]  Brenda S. Baker,et al.  Nonobtuse triangulation of polygons , 1988, Discret. Comput. Geom..

[21]  Robin Sibson,et al.  Locally Equiangular Triangulations , 1978, Comput. J..

[22]  R. B. Simpson,et al.  On optimal interpolation triangle incidences , 1989 .

[23]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[24]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .