Higher-order Szego theorems with two singular points

[1]  Rene F. Swarttouw,et al.  Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.

[2]  B. Simon A canonical factorization for meromorphic Herglotz functions on the unit disk and sum rules for Jacobi matrices , 2004 .

[3]  Andrej Zlatoš Sum rules for Jacobi matrices and divergent Lieb–Thirring sums , 2004, math-ph/0406007.

[4]  S. Denisov,et al.  Asymptotics of the orthogonal polynomials for the Szego class with a polynomial weight , 2004, J. Approx. Theory.

[5]  S. Kupin On a spectral property of Jacobi matrices , 2003 .

[6]  P. Yuditskii,et al.  On generalized sum rules for Jacobi matrices , 2003, math/0311469.

[7]  A. Laptev,et al.  On New Relations Between Spectral Properties of Jacobi Matrices and Their Coefficients , 2003 .

[8]  S. Denisov On the coexistence of absolutely continuous and singular continuous components of the spectral measure for some Sturm–Liouville operators with square summable potential , 2003 .

[9]  S. Kupin,et al.  ON SUM RULES OF SPECIAL FORM FOR JACOBI MATRICES , 2022 .

[10]  B. Simon,et al.  Sum Rules and the Szegő Condition for Orthogonal Polynomials on the Real Line , 2002, math-ph/0206023.

[11]  B. Simon,et al.  Sum rules for Jacobi matrices and their applications to spectral theory , 2001, math-ph/0112008.

[12]  Percy Deift,et al.  On the Absolutely Continuous Spectrum¶of One-Dimensional Schrödinger Operators¶with Square Summable Potentials , 1999 .

[13]  Barry Simon,et al.  Orthogonal polynomials on the unit circle. Part 1 , 2005 .

[14]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[15]  S. Verblunsky,et al.  On Positive Harmonic Functions , 1936 .

[16]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.