Synchrosqueezed Wave Packet Transform for 2D Mode Decomposition
暂无分享,去创建一个
[1] E. Candès,et al. Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .
[2] Sandra M. Richwalski,et al. Multi-component wavefield separation applied to high-resolution surface seismic data , 2001 .
[3] Jean Claude Nunes,et al. Image analysis by bidimensional empirical mode decomposition , 2003, Image Vis. Comput..
[4] Lexing Ying,et al. Fast Multiscale Gaussian Wavepacket Transforms and Multiscale Gaussian Beams for the Wave Equation , 2010, Multiscale Model. Simul..
[5] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[6] Peter W. Cary,et al. Wavefield separation in the presence of statics: application to synthetic and real data , 1999 .
[7] Zhaohua Wu,et al. A Variant of the EMD Method for Multi-Scale Data , 2009, Adv. Data Sci. Adapt. Anal..
[8] Norden E. Huang,et al. Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..
[9] Anna Linderhed,et al. Image Empirical Mode Decomposition: a New Tool for Image Processing , 2009, Adv. Data Sci. Adapt. Anal..
[10] Patrick Flandrin,et al. One or Two frequencies? The Synchrosqueezing Answers , 2011, Adv. Data Sci. Adapt. Anal..
[11] E. Candès,et al. The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.
[12] L. Demanet,et al. Wave atoms and sparsity of oscillatory patterns , 2007 .
[13] T. Hou,et al. Data-driven time-frequency analysis , 2012, 1202.5621.
[14] Patrick Flandrin,et al. Time-Frequency/Time-Scale Reassignment , 2003 .
[15] Anna Linderhed. Variable Sampling of the Empirical Mode Decomposition of Two-Dimensional Signals , 2005, Int. J. Wavelets Multiresolution Inf. Process..
[16] I. Daubechies,et al. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .
[17] Norden E. Huang,et al. On Instantaneous Frequency , 2009, Adv. Data Sci. Adapt. Anal..
[18] Jean Claude Nunes,et al. Bidimensional Empirical Mode Decomposition Modified for Texture Analysis , 2003, SCIA.
[19] E. Candès,et al. Continuous curvelet transform: II. Discretization and frames , 2005 .
[20] Michael I. Jordan,et al. On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.
[21] Gabriel Rilling,et al. One or Two Frequencies? The Empirical Mode Decomposition Answers , 2008, IEEE Transactions on Signal Processing.
[22] Mirko van der Baan,et al. PP/PS Wavefield separation by independent component analysis , 2006 .
[23] S. Mallat. A wavelet tour of signal processing , 1998 .
[24] N. Huang,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[25] Patrick Flandrin,et al. Improving the readability of time-frequency and time-scale representations by the reassignment method , 1995, IEEE Trans. Signal Process..
[26] P. Laguna,et al. Signal Processing , 2002, Yearbook of Medical Informatics.
[27] Valérie Perrier,et al. The Monogenic Synchrosqueezed Wavelet Transform: A tool for the Decomposition/Demodulation of AM-FM images , 2012, ArXiv.
[28] P. Flandrin,et al. Differential reassignment , 1997, IEEE Signal Processing Letters.
[29] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[30] Norden E. Huang,et al. The Multi-Dimensional Ensemble Empirical Mode Decomposition Method , 2009, Adv. Data Sci. Adapt. Anal..
[31] Thomas Y. Hou,et al. Adaptive Data Analysis via Sparse Time-Frequency Representation , 2011, Adv. Data Sci. Adapt. Anal..
[32] E. Candès,et al. Continuous curvelet transform , 2003 .