Synchrosqueezed Wave Packet Transform for 2D Mode Decomposition

This paper introduces the synchrosqueezed wave packet transform as a method for analyzing two-dimensional images. This transform is a combination of wave packet transforms of a certain geometric scaling, a reallocation technique for sharpening phase space representations, and clustering algorithms for modal decomposition. For a function that is a superposition of several wave-like components with a highly oscillatory pattern satisfying certain separation conditions, we prove that the synchrosqueezed wave packet transform identifies these components and estimates their local wavevectors. A discrete version of this transform is discussed in detail, and numerical results are given to demonstrate the properties of the proposed transform.

[1]  E. Candès,et al.  Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .

[2]  Sandra M. Richwalski,et al.  Multi-component wavefield separation applied to high-resolution surface seismic data , 2001 .

[3]  Jean Claude Nunes,et al.  Image analysis by bidimensional empirical mode decomposition , 2003, Image Vis. Comput..

[4]  Lexing Ying,et al.  Fast Multiscale Gaussian Wavepacket Transforms and Multiscale Gaussian Beams for the Wave Equation , 2010, Multiscale Model. Simul..

[5]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[6]  Peter W. Cary,et al.  Wavefield separation in the presence of statics: application to synthetic and real data , 1999 .

[7]  Zhaohua Wu,et al.  A Variant of the EMD Method for Multi-Scale Data , 2009, Adv. Data Sci. Adapt. Anal..

[8]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[9]  Anna Linderhed,et al.  Image Empirical Mode Decomposition: a New Tool for Image Processing , 2009, Adv. Data Sci. Adapt. Anal..

[10]  Patrick Flandrin,et al.  One or Two frequencies? The Synchrosqueezing Answers , 2011, Adv. Data Sci. Adapt. Anal..

[11]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[12]  L. Demanet,et al.  Wave atoms and sparsity of oscillatory patterns , 2007 .

[13]  T. Hou,et al.  Data-driven time-frequency analysis , 2012, 1202.5621.

[14]  Patrick Flandrin,et al.  Time-Frequency/Time-Scale Reassignment , 2003 .

[15]  Anna Linderhed Variable Sampling of the Empirical Mode Decomposition of Two-Dimensional Signals , 2005, Int. J. Wavelets Multiresolution Inf. Process..

[16]  I. Daubechies,et al.  Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .

[17]  Norden E. Huang,et al.  On Instantaneous Frequency , 2009, Adv. Data Sci. Adapt. Anal..

[18]  Jean Claude Nunes,et al.  Bidimensional Empirical Mode Decomposition Modified for Texture Analysis , 2003, SCIA.

[19]  E. Candès,et al.  Continuous curvelet transform: II. Discretization and frames , 2005 .

[20]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[21]  Gabriel Rilling,et al.  One or Two Frequencies? The Empirical Mode Decomposition Answers , 2008, IEEE Transactions on Signal Processing.

[22]  Mirko van der Baan,et al.  PP/PS Wavefield separation by independent component analysis , 2006 .

[23]  S. Mallat A wavelet tour of signal processing , 1998 .

[24]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  Patrick Flandrin,et al.  Improving the readability of time-frequency and time-scale representations by the reassignment method , 1995, IEEE Trans. Signal Process..

[26]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[27]  Valérie Perrier,et al.  The Monogenic Synchrosqueezed Wavelet Transform: A tool for the Decomposition/Demodulation of AM-FM images , 2012, ArXiv.

[28]  P. Flandrin,et al.  Differential reassignment , 1997, IEEE Signal Processing Letters.

[29]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[30]  Norden E. Huang,et al.  The Multi-Dimensional Ensemble Empirical Mode Decomposition Method , 2009, Adv. Data Sci. Adapt. Anal..

[31]  Thomas Y. Hou,et al.  Adaptive Data Analysis via Sparse Time-Frequency Representation , 2011, Adv. Data Sci. Adapt. Anal..

[32]  E. Candès,et al.  Continuous curvelet transform , 2003 .