Koiter asymptotic analysis of multilayered composite structures using mixed solid-shell finite elements

Abstract In this paper we propose a powerful tool for the evaluation of the initial post-buckling behavior of multi-layered composite shells and beams in both bifurcation and limit load cases, including mode interaction and imperfection sensitivity. This tool, based on the joint use of a specialized Koiter asymptotic method and a mixed solid-shell finite element model, is accurate, simple and characterized by a computational cost far lower than standard path-following approaches and many advantages with respect to asymptotic analysis performed with shell elements. The method is very simple and easy to include in existing FE codes because it is based on the same ingredients of a linearized buckling analysis, with very light formula due to the presence of displacement degrees of freedom only. Due to its efficiency it is suitable for layup design when geometrical nonlinearities have to be considered.

[1]  Eelco Jansen,et al.  Finite element based coupled mode initial post-buckling analysis of a composite cylindrical shell ☆ , 2010 .

[2]  Sven Klinkel,et al.  A robust non-linear solid shell element based on a mixed variational formulation , 2006 .

[3]  Stefanie Reese,et al.  A reduced integration solid‐shell finite element based on the EAS and the ANS concept—Geometrically linear problems , 2009 .

[4]  Alessandra Genoese,et al.  A geometrically exact beam model with non-uniform warping coherently derived from the Saint Venant rod , 2014 .

[5]  Giuseppe A. Trunfio,et al.  Path‐following analysis of thin‐walled structures and comparison with asymptotic post‐critical solutions , 2002 .

[6]  Kim J.R. Rasmussen,et al.  Nonlinear buckling optimization of composite structures considering ''worst" shape imperfections , 2010 .

[7]  Ioannis G. Raftoyiannis,et al.  Finite elements for post-buckling analysis. II—Application to composite plate assemblies , 1995 .

[8]  K. Y. Sze,et al.  Universal three‐dimensional connection hexahedral elements based on hybrid‐stress theory for solid structures , 2010 .

[9]  Raffaele Casciaro,et al.  Asymptotic post-buckling FEM analysis using corotational formulation , 2009 .

[10]  Dinar Camotim,et al.  Asymptotic-Numerical Method to Analyze the Postbuckling Behavior, Imperfection-Sensitivity, and Mode Interaction in Frames , 2005 .

[11]  Lawrence N. Virgin,et al.  Finite element analysis of post-buckling dynamics in plates-Part I: An asymptotic approach , 2006 .

[12]  T. Pian,et al.  Hybrid and Incompatible Finite Element Methods , 2005 .

[13]  Erik Lund,et al.  Post‐buckling optimization of composite structures using Koiter's method , 2016 .

[14]  K. Y. Sze,et al.  A stabilized eighteen-node solid element for hyperelastic analysis of shells , 2004 .

[15]  Mostafa M. Abdalla,et al.  The Koiter-Newton approach using von Kármán kinematics for buckling analyses of imperfection sensitive structures , 2014 .

[16]  Yuqi Liu,et al.  A new reduced integration solid‐shell element based on EAS and ANS with hourglass stabilization , 2015 .

[17]  Luis A. Godoy,et al.  Elastic postbuckling analysis via finite element and perturbation techniques. Part 1: Formulation , 1992 .

[18]  Benjamin W. Schafer,et al.  STOCHASTIC POST-BUCKLING OF FRAMES USING KOITER'S METHOD , 2006 .

[19]  Raffaele Zinno,et al.  A mixed isostatic 24 dof element for static and buckling analysis of laminated folded plates , 2014 .

[20]  Raffaele Zinno,et al.  Imperfection sensitivity analysis of laminated folded plates , 2015 .

[21]  K. Y. Sze,et al.  An eight‐node hybrid‐stress solid‐shell element for geometric non‐linear analysis of elastic shells , 2002 .

[22]  K. Y. Sze,et al.  Popular benchmark problems for geometric nonlinear analysis of shells , 2004 .

[23]  Stefanie Reese,et al.  A reduced integration solid‐shell finite element based on the EAS and the ANS concept—Large deformation problems , 2011 .

[24]  Viorel Ungureanu,et al.  Instability mode interaction: From Van Der Neut model to ECBL approach , 2014 .

[25]  Raffaele Casciaro Computational asymptotic post-buckling analysis of slender elastic structures , 2005 .

[26]  Paul M. Weaver,et al.  Postbuckling analysis of variable angle tow plates using differential quadrature method , 2013 .

[27]  K. Y. Sze,et al.  Three‐dimensional continuum finite element models for plate/shell analysis , 2002 .

[28]  Hamid Zahrouni,et al.  Asymptotic-numerical method for buckling analysis of shell structures with large rotations , 2004 .

[29]  Franco Brezzi,et al.  How to get around a simple quadratic fold , 1986 .

[30]  Ginevra Salerno,et al.  MODE JUMPING AND ATTRACTIVE PATHS IN MULTIMODE ELASTIC BUCKLING , 1997 .

[31]  Ralf Peek,et al.  Postbuckling behavior and imperfection sensitivity of elastic structures by the Lyapunov-Schmidt-Koiter approach , 1993 .

[32]  X. G. Tan,et al.  Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics , 2003 .

[33]  Mostafa Abdalla,et al.  An eigenanalysis-based bifurcation indicator proposed in the framework of a reduced-order modeling technique for non-linear structural analysis , 2016 .

[34]  K. Y. Sze,et al.  Hybrid‐stress solid elements for shell structures based upon a modified variational functional , 2002 .

[35]  Francesco Ubertini,et al.  Koiter analysis of folded structures using a corotational approach , 2013 .

[36]  Raffaele Casciaro,et al.  The implicit corotational method and its use in the derivation of nonlinear structural models for beams and plates , 2012 .

[37]  K. Y. Sze,et al.  A hybrid stress ANS solid‐shell element and its generalization for smart structure modelling. Part I—solid‐shell element formulation , 2000 .

[38]  L. Vu-Quoc,et al.  Efficient Hybrid-EAS solid element for accurate stress prediction in thick laminated beams, plates, and shells , 2013 .

[39]  K. Y. Sze,et al.  A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses , 2002 .

[40]  Raffaele Casciaro,et al.  Nonlinear FEM analysis for beams and plate assemblages based on the implicit corotational method , 2012 .

[41]  Stefano Gabriele,et al.  Initial postbuckling behavior of thin-walled frames under mode interaction , 2013 .

[42]  Giovanni Garcea,et al.  KOITER'S ANALYSIS OF THIN-WALLED STRUCTURES BY A FINITE ELEMENT APPROACH , 1996 .

[43]  K. Y. Sze,et al.  Hybrid‐stress six‐node prismatic elements , 2004 .

[44]  Ke Liang,et al.  A Koiter‐Newton approach for nonlinear structural analysis , 2013 .

[45]  Luis A. Godoy,et al.  FINITE ELEMENTS FOR THREE-MODE INTERACTION IN BUCKLING ANALYSIS , 1996 .

[46]  Sven Klinkel,et al.  A continuum based three-dimensional shell element for laminated structures , 1999 .

[47]  Amin Ghali,et al.  Hybrid hexahedral element for solids, plates, shells and beams by selective scaling , 1993 .

[48]  Giuseppe A. Trunfio,et al.  Mixed formulation and locking in path-following nonlinear analysis , 1998 .

[49]  Raffaele Casciaro,et al.  PERTURBATION APPROACH TO ELASTIC POST-BUCKLING ANALYSIS , 1998 .

[50]  Ginevra Salerno,et al.  Extrapolation locking and its sanitization in Koiter's asymptotic analysis , 1999 .

[51]  Giovanni Garcea,et al.  Mixed formulation in Koiter analysis of thin-walled beams , 2001 .

[52]  Antonio Bilotta,et al.  Direct Evaluation of the Post-Buckling Behavior of Slender Structures Through a Numerical Asymptotic Formulation , 2014 .

[53]  Raffaele Casciaro,et al.  Asymptotic post-buckling analysis of rectangular plates by HC finite elements , 1995 .

[54]  Raffaele Zinno,et al.  Koiter asymptotic analysis of folded laminated composite plates , 2014 .