Zero-dipole molecular organic cations in mixed organic–inorganic halide perovskites: possible chemical solution for the reported anomalous hysteresis in the current–voltage curve measurements

Starting from a brief description of the main architectures characterizing the novel solar technology of perovskite-based solar cells, we focus our attention on the anomalous hysteresis experimentally found to affect the measurement of the current-voltage curve of such devices. This detrimental effect, associated with slow dynamic reorganization processes, depends on several parameters; among them, the scan rate of the measurements, the architecture of the cell, and the perovskite deposition rate are crucial. Even if a conclusive explanation of the origin of the hysteresis has not been provided so far, several experimental findings ascribe its origin to ionic migration at an applied bias and dielectric polarization that occurs in the perovskite layer. Consistently, a dipole-moment-reduced cation such as formamidinium ion is experimentally reported to quantitatively reduce the hysteresis from perovskite-based devices. By means of a density-functional theory-based set of calculations, we have predicted and characterized guanidinium ion (GA = (+)[C(NH2)3], a zero-dipole moment cation by symmetry)-based organic-inorganic halide perovskite's structural and electronic properties, speculating that such a cation and the alloys it may form with other organic cations can represent a possible chemical solution for the puzzling issue of the hysteresis.

[1]  Aron Walsh,et al.  Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014, 1405.5810.

[2]  H. Snaith,et al.  Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices , 2015, 1504.05454.

[3]  D. Mitzi,et al.  Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets , 1995, Science.

[4]  Yaming Yu,et al.  NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells , 2014 .

[5]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[6]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[7]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[8]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[9]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[10]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[11]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[12]  G. Papavassiliou,et al.  Three- and low-dimensional inorganic semiconductors , 1997 .

[13]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[14]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[15]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[16]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[17]  Hiroshi Segawa,et al.  Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. , 2013, The journal of physical chemistry letters.

[18]  Trystan Watson,et al.  Efficient, Semitransparent Neutral-Colored Solar Cells Based on Microstructured Formamidinium Lead Trihalide Perovskite. , 2015, The journal of physical chemistry letters.

[19]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[20]  A. Stroppa,et al.  Hybrid Improper Ferroelectricity in a Multiferroic and Magnetoelectric Metal‐Organic Framework , 2013, Advanced materials.

[21]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[22]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[23]  T. Miyasaka Organo-lead Halide Perovskite: Rare Functions in Photovoltaics and Optoelectronics , 2015 .

[24]  J. Fujisawa,et al.  Cation Role in Structural and Electronic Properties of 3D Organic–Inorganic Halide Perovskites: A DFT Analysis , 2014 .

[25]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[26]  J. Even,et al.  Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications , 2013 .

[27]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[28]  K. Yamashita,et al.  Organic–inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances , 2015 .

[29]  Juan Bisquert,et al.  Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. , 2014, The journal of physical chemistry letters.

[30]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[31]  Takuya Masuda,et al.  Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method , 2015 .

[32]  Hiroshi Segawa,et al.  Organic - Inorganic hybrid lead iodide perovskite featuring zero dipole moment guanidinium cations: A theoretical analysis , 2015 .

[33]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[34]  Claudine Katan,et al.  Analysis of Multivalley and Multibandgap Absorption and Enhancement of Free Carriers Related to Exciton Screening in Hybrid Perovskites , 2014 .

[35]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[36]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[37]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[38]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[39]  S Ramaseshan,et al.  Crystal Physics, Diffraction, Theoretical and General Crystallography , 1981 .

[40]  M. Szafrański Investigation of phase instabilities in guanidinium halogenoplumbates(II) , 1997 .

[41]  D. Weber CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure , 1978 .

[42]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[43]  Anthony K. Cheetham,et al.  Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .

[44]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[45]  P. Blöchl,et al.  Projector augmented wave method:ab initio molecular dynamics with full wave functions , 2002, cond-mat/0201015.

[46]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[47]  J. A. del Cueto,et al.  Effect of hysteresis on measurements of thin-film cell performance , 2010, Optics + Photonics for Sustainable Energy.

[48]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[49]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[50]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[51]  Tsutomu Miyasaka,et al.  Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[52]  A. Laudani,et al.  Identification of the one-diode model for photovoltaic modules from datasheet values , 2014 .

[53]  Richard L. Harlow,et al.  Preparation and characterization of layered lead halide compounds , 1991 .

[54]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[55]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[56]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[57]  Arie Zaban,et al.  Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions. , 2014, The journal of physical chemistry letters.

[58]  M. Topič,et al.  Optimal I-V Curve Scan Time of Solar Cells and Modules in Light of Irradiance Level , 2012 .

[59]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[60]  Wei Zhang,et al.  Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells , 2015 .

[61]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[62]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[63]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[64]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[65]  J. A. del Cueto,et al.  Striving for a standard protocol for preconditioning or stabilization of polycrystalline thin film photovoltaic modules , 2009, Optics + Photonics for Sustainable Energy.

[66]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[67]  T. Miyasaka Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices , 2015 .

[68]  D. Mitzi,et al.  Conducting tin halides with a layered organic-based perovskite structure , 1994, Nature.

[69]  Kangning Liang,et al.  Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique , 1998 .

[70]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[71]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[72]  H. Mashiyama,et al.  Structural Study on Cubic–Tetragonal Transition of CH3NH3PbI3 , 2002 .

[73]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[74]  David B. Mitzi,et al.  Templating and structural engineering in organic–inorganic perovskites , 2001 .

[75]  A. Stroppa,et al.  Ferroelectric Polarization of CH3NH3PbI3: A Detailed Study Based on Density Functional Theory and Symmetry Mode Analysis. , 2015, The journal of physical chemistry letters.

[76]  D. Mitzi,et al.  Organic-inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer. , 2000, Inorganic chemistry.

[77]  P. Umari,et al.  Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. , 2014, Nano letters.

[78]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[79]  Edward H. Sargent,et al.  A two-step route to planar perovskite cells exhibiting reduced hysteresis , 2015 .

[80]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.