Systematic mapping of chromatin state landscapes during mouse development

Embryogenesis requires epigenetic information that allows each cell to respond appropriately to developmental cues. Histone modifications are core components of a cell’s epigenome, giving rise to chromatin states that modulate genome function. Here, we systematically profile histone modifications in a diverse panel of mouse tissues at 8 developmental stages from 10.5 days post conception until birth, performing a total of 1,128 ChIP-seq assays across 72 distinct tissue-stages. We combine these histone modification profiles into a unified set of chromatin state annotations, and track their activity across developmental time and space. Through integrative analysis we identify dynamic enhancers, reveal key transcriptional regulators, and characterize the role of chromatin-based repression in developmental gene regulation. We also leverage these data to link enhancers to putative target genes, revealing connections between coding and non-coding sequence variation in disease etiology. Our study provides a compendium of resources for biomedical researchers, and achieves the most comprehensive view of embryonic chromatin states to date.

Bing Ren | J. Michael Cherry | Axel Visel | Len A. Pennacchio | Wei Wang | Joseph R. Ecker | J. Seth Strattan | Yin Shen | Diane Trout | Mengchi Wang | Yupeng He | Yunjiang Qiu | Yanxiao Zhang | Jean M. Davidson | Brian A. Williams | Henry Amrhein | Ingrid Plajzer-Frick | Veena Afzal | Diane E. Dickel | Andre Wildberg | Iros Barozzi | Momoe Kato | Bo Ding | Tyler H. Garvin | Catherine S. Pickle | Jennifer A. Akiyama | Sebastian Preissl | J. Cherry | D. Dickel | B. Williams | A. Visel | B. Ren | L. Pennacchio | Wei Wang | Yin Shen | Diane Trout | J. Ecker | D. Gorkin | Henry Amrhein | Yunjiang Qiu | S. Preissl | Yuan Zhao | Yanxiao Zhang | V. Afzal | J. Akiyama | I. Plajzer-Frick | Bo Ding | Hongbo Yang | I. Barozzi | Mengchi Wang | Sora Chee | Brandon J. Mannion | Quan T. Pham | Elizabeth Lee | J. Strattan | J. Ecker | Yupeng He | Ah Young Lee | Bin Li | C. Pickle | Sora Chee | Yoko Fukuda-Yuzawa | David U. Gorkin | Bin Li | Hongbo Yang | Yuan Zhao | Bo Zhang | Anne N. Harrington | Elizabeth A. Lee | Momoe Kato | Yoko Fukuda-Yuzawa | B. Mannion | Andre Wildberg | Joseph R. Ecker | Bo Zhang | Brandon J. Mannion | J. M. Cherry | Len A. Pennacchio | Veena Afzal | David U. Gorkin | Ah Young Lee | J. Seth Strattan | Jean M. Davidson | Jennifer A. Akiyama | Catherine S. Pickle | Tyler H. Garvin | Quan T. Pham | Anne N. Harrington | Elizabeth A. Lee | Brian A. Williams | J. Michael Cherry | Diane E. Dickel | Jean M. Davidson | J. M. Cherry | Brian A. Williams | Andre | Wildberg | Yunjiang | Qiu | Anne N. Harrington | Yoko | Fukuda-Yuzawa

[1]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[2]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[3]  Laura E. DeMare,et al.  The genomic landscape of cohesin-associated chromatin interactions , 2013, Genome research.

[4]  Shane J. Neph,et al.  A comparative encyclopedia of DNA elements in the mouse genome , 2014, Nature.

[5]  S. Tapscott,et al.  NeuroD2 and neuroD3: distinct expression patterns and transcriptional activation potentials within the neuroD gene family , 1996, Molecular and cellular biology.

[6]  B. Wold,et al.  Large-Scale Quality Analysis of Published ChIP-seq Data , 2013, G3: Genes, Genomes, Genetics.

[7]  R. Shivdasani,et al.  Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1. , 2015, Developmental biology.

[8]  Bing Ren,et al.  ChromaSig: A Probabilistic Approach to Finding Common Chromatin Signatures in the Human Genome , 2008, PLoS Comput. Biol..

[9]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[10]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[11]  Tony Kouzarides,et al.  Histone core modifications regulating nucleosome structure and dynamics , 2014, Nature Reviews Molecular Cell Biology.

[12]  Jing Wang,et al.  WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013 , 2013, Nucleic Acids Res..

[13]  Matthew C. Canver,et al.  BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis , 2015, Nature.

[14]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[15]  R. Lovell-Badge,et al.  Multipotent cell lineages in early mouse development depend on SOX2 function. , 2003, Genes & development.

[16]  Andrew J. Bannister,et al.  Regulation of chromatin by histone modifications , 2011, Cell Research.

[17]  D. Rubinsztein Annual Review of Genomics and Human Genetics , 2001 .

[18]  Bing Ren,et al.  Fine Tuning of Craniofacial Morphology by Distant-Acting Enhancers , 2013, Science.

[19]  Pietro Liò,et al.  The BioMart community portal: an innovative alternative to large, centralized data repositories , 2015, Nucleic Acids Res..

[20]  En Li,et al.  Suv 39 h-Mediated Histone H 3 Lysine 9 Methylation Directs DNA Methylation to Major Satellite Repeats at Pericentric Heterochromatin , 2003 .

[21]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[22]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[23]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[24]  L. Lim,et al.  Transcription factors in mouse lung development and function. , 2001, American journal of physiology. Lung cellular and molecular physiology.

[25]  Alan M. Moses,et al.  In vivo enhancer analysis of human conserved non-coding sequences , 2006, Nature.

[26]  Jérôme Déjardin,et al.  Constitutive heterochromatin formation and transcription in mammals , 2014, Epigenetics & Chromatin.

[27]  J. Martens,et al.  Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. , 2014, Molecular cell.

[28]  Marc D. Perry,et al.  ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia , 2012, Genome research.

[29]  T. Chan,et al.  Driver mutations of cancer epigenomes , 2014, Protein & Cell.

[30]  Cameron S. Osborne,et al.  The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements , 2015, Genome research.

[31]  C. Allis,et al.  The molecular hallmarks of epigenetic control , 2016, Nature Reviews Genetics.

[32]  Naoto Endo,et al.  Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Rossant,et al.  Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. , 1989, Development.

[34]  Koji Shimozaki Sox2 transcription network acts as a molecular switch to regulate properties of neural stem cells. , 2014, World journal of stem cells.

[35]  A. Shilatifard,et al.  Epigenetic balance of gene expression by Polycomb and COMPASS families , 2016, Science.

[36]  A. McCallion,et al.  Genomics of long-range regulatory elements. , 2010, Annual review of genomics and human genetics.

[37]  J. Michael Cherry,et al.  ENCODE data at the ENCODE portal , 2015, Nucleic Acids Res..

[38]  Giacomo Cavalli,et al.  Polycomb group proteins: repression in 3D. , 2011, Trends in genetics : TIG.

[39]  B. Hall,et al.  A shared role for sonic hedgehog signalling in patterning chondrichthyan gill arch appendages and tetrapod limbs , 2016, Development.

[40]  S. Loughna,et al.  Heavy and light roles: myosin in the morphogenesis of the heart , 2012, Cellular and Molecular Life Sciences.

[41]  Tyler H. Garvin,et al.  Genome-wide compendium and functional assessment of in vivo heart enhancers , 2016, Nature Communications.

[42]  K. Kaestner,et al.  Transcriptional networks in liver and intestinal development. , 2012, Cold Spring Harbor perspectives in biology.

[43]  Martine Uittenbogaard,et al.  NeuroD6 genomic signature bridging neuronal differentiation to survival via the molecular chaperone network , 2010, Journal of neuroscience research.

[44]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[45]  N. Neretti,et al.  Transcriptional landscape of repetitive elements in normal and cancer human cells , 2014, BMC Genomics.

[46]  Mi-Sung Kim,et al.  MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function , 2008, Proceedings of the National Academy of Sciences.

[47]  Bing Ren,et al.  CRISPR Reveals a Distal Super-Enhancer Required for Sox2 Expression in Mouse Embryonic Stem Cells , 2014, PloS one.

[48]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[49]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[50]  N. Cox,et al.  Obesity-associated variants within FTO form long-range functional connections with IRX3 , 2014, Nature.

[51]  Laura E. DeMare,et al.  Chromatin state signatures associated with tissue-specific gene expression and enhancer activity in the embryonic limb , 2012, Genome research.

[52]  E. Lander,et al.  The Mammalian Epigenome , 2007, Cell.

[53]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[54]  Lee E. Edsall,et al.  A map of the cis-regulatory sequences in the mouse genome , 2012, Nature.

[55]  J. Shendure,et al.  A de novo convergence of autism genetics and molecular neuroscience , 2014, Trends in Neurosciences.

[56]  Bradley E. Bernstein,et al.  Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues , 2013, Cell.

[57]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[58]  Peter J. Bickel,et al.  Measuring reproducibility of high-throughput experiments , 2011, 1110.4705.

[59]  T. Evans,et al.  Orchestrating liver development , 2015, Development.

[60]  H. Bjornsson,et al.  Mendelian disorders of the epigenetic machinery: tipping the balance of chromatin states. , 2014, Annual review of genomics and human genetics.

[61]  A. Visel,et al.  Rapid and Pervasive Changes in Genome-wide Enhancer Usage during Mammalian Development , 2013, Cell.

[62]  Ryan A. Flynn,et al.  A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.

[63]  G. Dressler Transcription factors in renal development: the WT1 and Pax-2 story. , 1995, Seminars in nephrology.

[64]  Edgar Wingender,et al.  TFClass: an expandable hierarchical classification of human transcription factors , 2012, Nucleic Acids Res..

[65]  Lovelace J Luquette,et al.  Estimating enrichment of repetitive elements from high-throughput sequence data , 2010, Genome Biology.

[66]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[67]  D. Reinberg,et al.  Epigenetic inheritance: histone bookmarks across generations. , 2014, Trends in cell biology.

[68]  D. Valle,et al.  Lessons learned from the search for genes responsible for rare Mendelian disorders , 2016, Molecular genetics & genomic medicine.

[69]  Bruno Di Stefano,et al.  Polycomb complexes in stem cells and embryonic development , 2013, Development.

[70]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[71]  Inna Dubchak,et al.  VISTA Enhancer Browser—a database of tissue-specific human enhancers , 2006, Nucleic Acids Res..

[72]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[73]  Hans Clevers,et al.  Analysis of neural crest–derived clones reveals novel aspects of facial development , 2016, Science Advances.

[74]  M. Marra,et al.  Characterization of the Contradictory Chromatin Signatures at the 3′ Exons of Zinc Finger Genes , 2011, PloS one.

[75]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[76]  B. Ren,et al.  Mapping Human Epigenomes , 2013, Cell.

[77]  S. Mundlos,et al.  Formation of new chromatin domains determines pathogenicity of genomic duplications , 2016, Nature.

[78]  D. Srivastava,et al.  Genetics of Human Cardiovascular Disease , 2012, Cell.

[79]  B. Black,et al.  Transcription factor pathways and congenital heart disease. , 2012, Current topics in developmental biology.

[80]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[81]  A. Visel,et al.  Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions , 2015, Cell.

[82]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[83]  S. du Lac,et al.  Neuronal Classification and Marker Gene Identification via Single-Cell Expression Profiling of Brainstem Vestibular Neurons Subserving Cerebellar Learning , 2012, The Journal of Neuroscience.

[84]  A. Visel,et al.  Genomic Views of Distant-Acting Enhancers , 2009, Nature.

[85]  Matthew Stephens,et al.  Dissecting the regulatory architecture of gene expression QTLs , 2012, Genome Biology.

[86]  E. Furlong,et al.  Transcription factors: from enhancer binding to developmental control , 2012, Nature Reviews Genetics.

[87]  Martin Vingron,et al.  Characterization of hundreds of regulatory landscapes in developing limbs reveals two regimes of chromatin folding , 2017, Genome research.