Implications of Consumer Information Behaviour to Construct Utility-based Recommender Systems: A Prototypical Study

Product recommender systems aim to support consumers in making buying decisions. However, such a support requires considering the consumer behaviour in making buying decisions. In this paper, we deduce design requirements for utility-based recommender systems from the theory of consumer information behaviour and present empirically findings from experiments conducted with a prototypical implementation of the proposed requirements. The empirical examination shows that our recommender system has a high predictive validity.

[1]  Tobias Schneider,et al.  Preference-Based-Recommender-Systeme , 2005 .

[2]  Jela Steinerová,et al.  Users' information behaviour - a gender perspective , 2007, Inf. Res..

[3]  J. Bakos Reducing buyer search costs: implications for electronic marketplaces , 1997 .

[4]  J. Naglieri,et al.  Children's Search Strategies and Accompanying Verbal and Motor Strategic Behavior: Developmental Trends and Relations with Task Performance among Children Age 5 to 17. , 2006 .

[5]  Deborah Roedder John Consumer Socialization of Children: A Retrospective Look at Twenty-Five Years of Research , 1999 .

[6]  D. Frey,et al.  Vier experimentelle Untersuchungen zur Informationsbeschaffung bei der Produktauswahl , 1981 .

[7]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[8]  J. Bettman,et al.  Effects of Prior Knowledge and Experience and Phase of the Choice Process on Consumer Decision Processes: A Protocol Analysis , 1980 .

[9]  Zhigeng Pan,et al.  Content-Based Recommendation in E-Commerce , 2005, ICCSA.

[10]  D. F. Blankertz,et al.  Risk taking and information handling in consumer behavior , 1969 .

[11]  Yukun Cao,et al.  An intelligent fuzzy-based recommendation system for consumer electronic products , 2007, Expert Syst. Appl..

[12]  Oliver Hinz,et al.  The Impact of Search and Recommendation Systems on Sales in Electronic Commerce , 2010, Bus. Inf. Syst. Eng..

[13]  J. Jacoby,et al.  Brand Choice Behavior as a Function of Information Load , 1974 .

[14]  J. Jacoby Perspectives on Information Overload , 1984 .

[15]  J. Jacoby Information Load and Decision Quality: Some Contested Issues , 1977 .

[16]  R. Olshavsky,et al.  Task Complexity and Contingent Processing in Brand Choice , 1979 .

[17]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[18]  P. Green,et al.  Conjoint Analysis in Consumer Research: Issues and Outlook , 1978 .

[19]  Michael Scholz,et al.  From Consumer Preferences Towards Buying Decisions - Conjoint Analysis as Preference Measuring Method in Product Recommender Systems , 2008, Bled eConference.

[20]  W. Fritz,et al.  lntormationsbedarf und Informationsbeschaffung des Konsumenten bei unterschiedlichen Kaufobjekten und Populationen , 1981 .

[21]  Girish N. Punj The formulation, empirical specification and testing of a model of consumer information search behavior for new automobiles , 1983 .

[22]  John Riedl,et al.  Explaining collaborative filtering recommendations , 2000, CSCW '00.

[23]  Eric J. Johnson,et al.  The adaptive decision maker , 1993 .

[24]  J. Bettman,et al.  Effects of Information Presentation Format on Consumer Information Acquisition Strategies , 1977 .

[25]  David C. Wilson,et al.  SmartChoice: An Online Recommender System to Support Low-Income Families in Public School Choice , 2009, AI Mag..

[26]  D. Kuhn,et al.  A Developmental Study of Consumer Information-Processing Strategies , 1980 .

[27]  John R. Hauser,et al.  Probabilistic Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis: Theory and Application , 2007 .

[28]  Wayne D. Hoyer,et al.  Intra- and Inter-individual Consistency in Information Acquisition — A Cross-Cultural Examination , 1981 .

[29]  James Jaccard,et al.  Preference, Search, and Choice: An Integrative Approach , 1979 .

[30]  G. Silberer Das Informationsverhalten des Konsumenten beim Kaufentscheid — Ein analytisch-theoretischer Bezugsrahmen , 1981 .

[31]  N. Capon,et al.  Individual, Product Class, and Task-Related Factors in Consumer Information Processing , 1980 .

[32]  R. Belk Situational Variables and Consumer Behavior , 1975 .

[33]  Helmut Krcmar,et al.  Towards a Research Method for Theory-driven Design Research , 2009, Wirtschaftsinformatik.

[34]  Thomas Hofmann,et al.  Robust collaborative filtering , 2007, RecSys '07.

[35]  R. Staelin,et al.  Prepurchase Information Seeking for New Cars and Major Household Appliances , 1972 .

[36]  Thomas D. Wilson,et al.  Human Information Behavior , 2000, Informing Sci. Int. J. an Emerg. Transdiscipl..

[37]  Peter Haddawy,et al.  Integrating Visualization and Multi-Attribute Utility Theory for Online Product Selection , 2007, Int. J. Inf. Technol. Decis. Mak..

[38]  Arnaud De Bruyn,et al.  Offering Online Recommendations with Minimum Customer Input Through Conjoint-Based Decision Aids , 2008, Mark. Sci..

[39]  Jay F. Nunamaker,et al.  Systems Development in Information Systems Research , 1990, J. Manag. Inf. Syst..