Witnessing incompatibility of quantum channels

We introduce the notion of incompatibility witness for quantum channels, defined as an affine functional that is non-negative on all pairs of compatible channels and strictly negative on some incompatible pair. This notion extends the recent definition of incompatibility witnesses for quantum measurements. We utilize the general framework of channels acting on arbitrary finite dimensional von Neumann algebras, thus allowing us to investigate incompatibility witnesses on measurement-measurement, measurement-channel and channel-channel pairs. We prove that any incompatibility witness can be implemented as a state discrimination task in which some intermediate classical information is obtained before completing the task. This implies that any incompatible pair of channels gives an advantage over compatible pairs in some such state discrimination task.

[1]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[2]  Werner Stulpe,et al.  Phase‐space representations of general statistical physical theories , 1992 .

[3]  Andreas J. Winter,et al.  State Discrimination With Post-Measurement Information , 2008, IEEE Transactions on Information Theory.

[4]  Anna Jencova Generalized channels: channels for convex subsets of the state space , 2011 .

[5]  Jiangwei Shang,et al.  Quantifying Quantum Resources with Conic Programming. , 2018, Physical review letters.

[6]  Teiko Heinosaari,et al.  An invitation to quantum incompatibility , 2015, 1511.07548.

[7]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[8]  Incompatibility of unbiased qubit observables and Pauli channels , 2017, 1710.00878.

[9]  R. Werner OPTIMAL CLONING OF PURE STATES , 1998, quant-ph/9804001.

[10]  Claudio Carmeli,et al.  State discrimination with postmeasurement information and incompatibility of quantum measurements , 2018, Physical Review A.

[11]  Martin Plávala Conditions for the compatibility of channels in general probabilistic theory and their connection to steering and Bell nonlocality , 2017, 1707.08650.

[12]  竹崎 正道 Theory of operator algebras , 2002 .

[13]  H. Barnum,et al.  Generalized no-broadcasting theorem. , 2007, Physical review letters.

[14]  Erkka Haapasalo,et al.  Robustness of incompatibility for quantum devices , 2015, 1502.04881.

[15]  T. Heinosaari,et al.  Quantum Tomography under Prior Information , 2011, 1109.5478.

[16]  Qualitative noise-disturbance relation for quantum measurements , 2013, 1303.5530.

[17]  D. Bruß,et al.  Optimal universal and state-dependent quantum cloning , 1997, quant-ph/9705038.

[18]  Teiko Heinosaari,et al.  Incompatibility of quantum channels , 2016, 1608.01794.

[19]  G. Kato,et al.  Perfect discrimination of nonorthogonal quantum states with posterior classical partial information , 2018, Physical Review A.

[20]  M. Keyl Fundamentals of quantum information theory , 2002, quant-ph/0202122.

[21]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[22]  Martin Pl'avala,et al.  All measurements in a probabilistic theory are compatible if and only if the state space is a simplex , 2016, 1608.05614.

[23]  Quantum incompatibility of channels with general outcome operator algebras. , 2017, 1708.00150.

[24]  Martin Mathieu COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS (Cambridge Studies in Advanced Mathematics 78) , 2004 .

[25]  Claudio Carmeli,et al.  Quantum Incompatibility Witnesses. , 2018, Physical review letters.

[26]  T. Miyadera,et al.  Relation between the state distinction power and disturbance in quantum measurements , 2016, Journal of Mathematical Physics.

[27]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[28]  Paul Skrzypczyk,et al.  All Sets of Incompatible Measurements give an Advantage in Quantum State Discrimination. , 2019, Physical review letters.

[29]  Nicolas J. Cerf,et al.  Asymmetric quantum cloning in any dimension , 1998, quant-ph/9805024.

[30]  Teiko Heinosaari,et al.  Adaptive strategy for joint measurements , 2016, 1604.08724.

[31]  Ion Nechita,et al.  Compatibility of Quantum Measurements and Inclusion Constants for the Matrix Jewel , 2018, SIAM J. Appl. Algebra Geom..

[32]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[33]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[34]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory , 2012 .

[35]  Anna-Lena Hashagen,et al.  Universal asymmetric quantum cloning revisited , 2016, Quantum Inf. Comput..

[36]  Alastair A. Abbott,et al.  Quantification of quantum dynamics with input-output games , 2019, Physical Review A.

[37]  Stephanie Wehner,et al.  Using postmeasurement information in state discrimination , 2010, 1003.0716.

[38]  Junki Mori Operational characterization of incompatibility of quantum channels with quantum state discrimination , 2020 .

[39]  T. Heinosaari,et al.  When do pieces determine the whole? Extreme marginals of a completely positive map , 2012, 1209.5933.

[40]  C. Carmeli,et al.  Noise–Disturbance Relation and the Galois Connection of Quantum Measurements , 2019, Foundations of Physics.

[41]  Paul Skrzypczyk,et al.  Quantifying Measurement Incompatibility of Mutually Unbiased Bases. , 2018, Physical review letters.

[42]  Samuel L. Braunstein,et al.  Quantum-information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit , 2001 .

[43]  R. Werner,et al.  Optimal cloning of pure states, testing single clones , 1998, quant-ph/9807010.