The Regularity of the Boundary of a Multidimensional Aggregation Patch

Let $d \geq 2$ and let $N(y)$ be the fundamental solution of the Laplace equation in $R^d$ We consider the aggregation equation $$ \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho v) =0, v = -\nabla N * \rho$$ with initial data $\rho(x,0) = \chi_{D_0}$, where $\chi_{D_0}$ is the indicator function of a bounded domain $D_0 \subset R^d.$ We now fix $0 < \gamma < 1$ and take $D_0$ to be a bounded $C^{1+\gamma}$ domain (a domain with smooth boundary of class $C^{1+\gamma}$). Then we have Theorem: If $D_0$ is a $C^{1 + \gamma}$ domain, then the initial value problem above has a solution given by $$\rho(x,t) = \frac{1}{1 -t} \chi_{D_t}(x), \quad x \in R^d, \quad 0 \le t < 1$$ where $D_t$ is a $C^{1 + \gamma}$ domain for all $0 \leq t < 1$.

[1]  J. Carrillo,et al.  Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations , 2011 .

[2]  Andrea L. Bertozzi,et al.  Blow-up in multidimensional aggregation equations with mildly singular interaction kernels , 2009 .

[3]  Andrea L. Bertozzi,et al.  Characterization of Radially Symmetric Finite Time Blowup in Multidimensional Aggregation Equations , 2012, SIAM J. Math. Anal..

[4]  Andrea L. Bertozzi,et al.  Global regularity for vortex patches , 1993 .

[5]  Andrea Bertozzi,et al.  Local and global well-posedness for aggregation equations and Patlak–Keller–Segel models with degenerate diffusion , 2010, 1009.2674.

[6]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[7]  Absence of Squirt Singularities for the Multi-Phase Muskat Problem , 2009, 0911.4109.

[8]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[9]  Kevin M. Passino,et al.  Stability analysis of swarms , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[10]  J. Verdera,et al.  Estimates for the maximal singular integral in terms of the singular integral:the case of even kernels , 2007, 0707.4610.

[11]  Dong Li,et al.  ON A NONLOCAL AGGREGATION MODEL WITH NONLINEAR DIFFUSION , 2009, 0902.2017.

[12]  Vincenzo Capasso,et al.  Modeling the aggregative behavior of ants of the species Polyergus rufescens , 2000 .

[13]  D. Morale,et al.  An interacting particle system modelling aggregation behavior: from individuals to populations , 2005, Journal of mathematical biology.

[14]  J. Vázquez,et al.  A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators , 2014 .

[15]  Thomas Laurent,et al.  Local and Global Existence for an Aggregation Equation , 2007 .

[16]  Jesús Rosado,et al.  Uniqueness of Bounded Solutions to Aggregation Equations by Optimal Transport Methods , 2009 .

[17]  E. Caglioti,et al.  A kinetic equation for granular media , 2009 .

[18]  Rafael José Iorio,et al.  Fourier Analysis and Partial Differential Equations , 2001 .

[19]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[20]  Andrea L. Bertozzi,et al.  AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS , 2012 .

[21]  Andrea L. Bertozzi,et al.  Finite-time blow-up of L∞-weak solutions of an aggregation equation , 2010 .

[22]  Martin Burger,et al.  Large time behavior of nonlocal aggregation models with nonlinear diffusion , 2008, Networks Heterog. Media.

[23]  Li Dong,et al.  FINITE-TIME SINGULARITIES OF AN AGGREGATION EQUATION IN R WITH FRACTIONAL DISSIPATION , 2008 .

[24]  E Weinan,et al.  Dynamics of vortex liquids in Ginzburg-Landau theories with applications to superconductivity. , 1994, Physical review. B, Condensed matter.

[25]  A. Mogilner,et al.  Mathematical Biology Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation , 2003 .

[26]  Benoît Perthame,et al.  Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .

[27]  Andrea L. Bertozzi,et al.  Finite-Time Blow-up of Solutions of an Aggregation Equation in Rn , 2007 .

[28]  M. SIAMJ.,et al.  EXISTENCE OF WEAK SOLUTIONS TO SOME VORTEX DENSITY MODELS , 2003 .

[29]  Hongjie Dong On Similarity Solutions to the Multidimensional Aggregation Equation , 2011, SIAM J. Math. Anal..

[30]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[31]  L. Ambrosio,et al.  Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices , 2011 .

[32]  Ping Zhang,et al.  Global solutions to vortex density equations arising from sup-conductivity , 2005 .

[33]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[34]  Jose L. Rodrigo,et al.  Refined blowup criteria and nonsymmetric blowup of an aggregation equation , 2009 .

[35]  J. Chemin,et al.  Persistance de structures géométriques dans les fluides incompressibles bidimensionnels , 1993 .

[36]  Wojbor A. Woyczyński,et al.  Global and Exploding Solutions for Nonlocal Quadratic Evolution Problems , 1998, SIAM J. Appl. Math..

[37]  Leo P. Kadanoff,et al.  Diffusion, attraction and collapse , 1999 .

[38]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[39]  M. Bodnar,et al.  An integro-differential equation arising as a limit of individual cell-based models , 2006 .

[40]  Giuseppe Toscani,et al.  One-dimensional kinetic models of granular flows , 2000 .

[41]  F. Poupaud,et al.  High-field Limit for the Vlasov-poisson-fokker-planck System , 2022 .

[42]  Andrea L. Bertozzi,et al.  Self-Similar Blowup Solutions to an Aggregation Equation in Rn , 2010, SIAM J. Appl. Math..

[43]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[44]  Andrea L. Bertozzi,et al.  Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion , 2010 .

[45]  Darryl D. Holm,et al.  Formation of clumps and patches in self-aggregation of finite-size particles , 2005, nlin/0506020.

[46]  V. I. Yudovich,et al.  Non-stationary flow of an ideal incompressible liquid , 1963 .

[47]  C. Fefferman,et al.  Breakdown of Smoothness for the Muskat Problem , 2012, 1201.2525.

[48]  F. Poupaud,et al.  Diagonal Defect Measures, Adhesion Dynamics and Euler Equation , 2002 .

[49]  C. Fefferman,et al.  Finite time singularities for the free boundary incompressible Euler equations , 2011, 1112.2170.

[50]  José A. Carrillo,et al.  Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .

[51]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[52]  T. Laurent,et al.  Lp theory for the multidimensional aggregation equation , 2011 .

[53]  J. Verdera,et al.  Extra cancellation of even Calderón–Zygmund operators and quasiconformal mappings , 2008, 0802.1185.

[54]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[55]  L. Ambrosio,et al.  A gradient flow approach to an evolution problem arising in superconductivity , 2008 .

[56]  Dong Li,et al.  Finite-Time Singularities of an Aggregation Equation in $${\mathbb {R}^n}$$ with Fractional Dissipation , 2009 .

[57]  Martin Burger,et al.  On an aggregation model with long and short range interactions , 2007 .

[58]  G. Toscani,et al.  Long-Time Asymptotics of Kinetic Models of Granular Flows , 2004 .