Bayes procedures for detecting a shift in the probability of success in a series of Bernoulli trials

Abstract The determination of a stopping rule for the detection of the time of an increase in the success probability of a sequence of independent Bernoulli trials is discussed. Both success probabilities are assumed unknown. A Bayesian approach is applied; the distribution of the location of the shift in the success probability is assumed geometric and the success probabilities are assumed to have known joint prior distribution. The costs involved are penalties for late or early stoppings. The nature of the optimal dynamic programming solution is discussed and a procedure for obtaining a suboptimal stopping rule is determined. The results indicate that the detection procedure is quite effective.