Approaches to Multimodality Imaging of Angiogenesis

Angiogenesis, defined as the formation of new capillaries by cellular outgrowth from existing microvessels, can be assessed by the evaluation of perfusion, function, and metabolism. However, more recently, novel, noninvasive imaging strategies for the evaluation of molecular events associated with the angiogenic process have been developed.

[1]  Arjan W. Griffioen,et al.  Imaging of angiogenesis , 2010, Angiogenesis.

[2]  A. Sinusas,et al.  Analysis of angiogenesis induced by local IGF-1 expression after myocardial infarction using microSPECT-CT imaging. , 2010, Journal of molecular and cellular cardiology.

[3]  Klaas Nicolay,et al.  Synergistic targeting of alphavbeta3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. , 2010, Nano letters.

[4]  Kai Chen,et al.  18F-Labeled Galacto and PEGylated RGD Dimers for PET Imaging of αvβ3 Integrin Expression , 2010, Molecular Imaging and Biology.

[5]  F. Blankenberg,et al.  Imaging Vascular Endothelial Growth Factor (VEGF) Receptors in Turpentine-Induced Sterile Thigh Abscesses with Radiolabeled Single-Chain VEGF , 2009, Journal of Nuclear Medicine.

[6]  Yi Wang,et al.  Magnetic source MRI: A new quantitative imaging of magnetic biomarkers , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[7]  C. Hawker,et al.  The Advantages of Nanoparticles for PET , 2009, Journal of Nuclear Medicine.

[8]  Jonathan R Lindner,et al.  Contrast ultrasound molecular imaging of inflammation in cardiovascular disease. , 2009, Cardiovascular research.

[9]  R. Razavi,et al.  Renal vascular inflammation induced by Western diet in ApoE-null mice quantified by (19)F NMR of VCAM-1 targeted nanobeacons. , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[10]  Stephan G Nekolla,et al.  Cardiovascular molecular imaging: an overview. , 2009, Cardiovascular research.

[11]  Shuang Liu Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. , 2009, Bioconjugate chemistry.

[12]  X. Papademetris,et al.  Serial Noninvasive Targeted Imaging of Peripheral Angiogenesis: Validation and Application of a Semiautomated Quantitative Approach , 2009, Journal of Nuclear Medicine.

[13]  Wei Liu,et al.  Ultrashort T  2* relaxometry for quantitation of highly concentrated superparamagnetic iron oxide (SPIO) nanoparticle labeled cells , 2009, Magnetic resonance in medicine.

[14]  Harald Ittrich,et al.  Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. , 2009, Nature nanotechnology.

[15]  Monica Shokeen,et al.  Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis , 2009, Proceedings of the National Academy of Sciences.

[16]  D. Kraitchman,et al.  Advances in Cardiovascular Imaging Multimodality Cardiovascular Molecular Imaging, Part II , 2008 .

[17]  Jean Tessier,et al.  Use of a Novel Arg-Gly-Asp Radioligand, 18F-AH111585, to Determine Changes in Tumor Vascularity After Antitumor Therapy , 2008, Journal of Nuclear Medicine.

[18]  A. Beer,et al.  Application of RGD-containing peptides as imaging probes for alphavbeta3 expression. , 2009, Frontiers in bioscience.

[19]  F. Epstein,et al.  Multimodality cardiovascular molecular imaging, part I. , 2008, Circulation. Cardiovascular imaging.

[20]  M. V. van Zandvoort,et al.  Quantitative molecular magnetic resonance imaging of tumor angiogenesis using cNGR-labeled paramagnetic quantum dots. , 2008, Cancer research.

[21]  S. Nekolla,et al.  In vivo molecular imaging of angiogenesis, targeting alphavbeta3 integrin expression, in a patient after acute myocardial infarction. , 2008, European heart journal.

[22]  L. Johnson,et al.  Radiolabeled arginine-glycine-aspartic acid peptides to image angiogenesis in swine model of hibernating myocardium. , 2008, JACC. Cardiovascular imaging.

[23]  S. Kaul,et al.  Molecular Imaging of Endothelial Vascular Cell Adhesion Molecule-1 Expression and Inflammatory Cell Recruitment During Vasculogenesis and Ischemia-Mediated Arteriogenesis , 2008, Circulation.

[24]  Matthias Glaser,et al.  Phase I Trial of the Positron-Emitting Arg-Gly-Asp (RGD) Peptide Radioligand 18F-AH111585 in Breast Cancer Patients , 2008, Journal of Nuclear Medicine.

[25]  D. Parker,et al.  Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences , 2008, Physics in medicine and biology.

[26]  D. Dione,et al.  Targeted imaging of hypoxia-induced integrin activation in myocardium early after infarction. , 2008, Journal of applied physiology.

[27]  J. Willmann,et al.  Imaging of VEGF Receptor in a Rat Myocardial Infarction Model Using PET , 2008, Journal of Nuclear Medicine.

[28]  Sanjiv S Gambhir,et al.  US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. , 2008, Radiology.

[29]  Michael Scott,et al.  Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics , 2007, International journal of nanomedicine.

[30]  R. Haubner Noninvasive tracer techniques to characterize angiogenesis. , 2008, Handbook of experimental pharmacology.

[31]  Ralph Weissleder,et al.  Molecular imaging of cardiovascular disease. , 2007, Circulation.

[32]  Marina V Backer,et al.  Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes , 2007, Nature Medicine.

[33]  Wolfhard Semmler,et al.  Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. , 2007, Cancer research.

[34]  Jonathan R Lindner,et al.  Molecular imaging with targeted contrast ultrasound. , 2007, Current opinion in biotechnology.

[35]  A. Cuthbertson,et al.  NC-100717: a versatile RGD peptide scaffold for angiogenesis imaging. , 2006, Bioorganic & medicinal chemistry letters.

[36]  David Cosgrove,et al.  Ultrasound contrast agents: an overview. , 2006, European journal of radiology.

[37]  Sanjiv S Gambhir,et al.  PET of vascular endothelial growth factor receptor expression. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[38]  M. Miyagawa,et al.  Noninvasive characterization of myocardial molecular interventions by integrated positron emission tomography and computed tomography. , 2006, Journal of the American College of Cardiology.

[39]  Ralph Weissleder,et al.  Nanoparticle imaging of integrins on tumor cells. , 2006, Neoplasia.

[40]  Patrick Winter,et al.  Applications of Nanotechnology to Atherosclerosis, Thrombosis, and Vascular Biology , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[41]  Richard T. Lee,et al.  Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. , 2006, American journal of physiology. Heart and circulatory physiology.

[42]  Antony K. Chen,et al.  Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging , 2006, Annals of Biomedical Engineering.

[43]  Yi-Hwa Liu,et al.  A New Method for SPECT Quantification of Targeted Radiotracers Uptake in the Myocardium , 2005, MICCAI.

[44]  Albert J. Sinusas,et al.  Noninvasive Imaging of Angiogenesis With a 99mTc-Labeled Peptide Targeted at &agr;v&bgr;3 Integrin After Murine Hindlimb Ischemia , 2005 .

[45]  S. Kaul,et al.  Assessment of Endogenous and Therapeutic Arteriogenesis by Contrast Ultrasound Molecular Imaging of Integrin Expression , 2005, Circulation.

[46]  Walter H Backes,et al.  Dynamic contrast-enhanced MR imaging kinetic parameters and molecular weight of dendritic contrast agents in tumor angiogenesis in mice. , 2005, Radiology.

[47]  Kyung-Han Lee,et al.  Radiolabeled RGD uptake and alphav integrin expression is enhanced in ischemic murine hindlimbs. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[48]  William R Wagner,et al.  Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine. , 2005, Cancer research.

[49]  N. Jahanshad,et al.  Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. , 2005, Circulation.

[50]  Patrick J. Gaffney,et al.  Quantitative “magnetic resonance immunohistochemistry” with ligand‐targeted 19F nanoparticles , 2004 .

[51]  D. Dione,et al.  Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. , 2004, The Journal of clinical investigation.

[52]  Ralph Weissleder,et al.  Seeing Within: Molecular Imaging of the Cardiovascular System , 2004, Circulation research.

[53]  M. Kutryk,et al.  Clinician Guide to Angiogenesis , 2003, Circulation.

[54]  Samuel A. Wickline,et al.  Molecular Imaging of Angiogenesis in Early-Stage Atherosclerosis With &agr;v&bgr;3-Integrin–Targeted Nanoparticles , 2003 .

[55]  A. Kassner,et al.  Molecular Imaging of Angiogenesis in Nascent Vx-2 Rabbit Tumors Using a Novel ανβ3-targeted Nanoparticle and 1.5 Tesla Magnetic Resonance Imaging , 2003 .

[56]  S. Robinson,et al.  Design, synthesis, and evaluation of radiolabeled integrin αvβ3 receptor antagonists for tumor imaging and radiotherapy , 2003 .

[57]  Jonathan R. Lindner,et al.  Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to &agr;v&bgr;3 , 2003 .

[58]  William R. Wagner,et al.  Targeted In Vivo Labeling of Receptors for Vascular Endothelial Growth Factor , 2003, Circulation.

[59]  M. Cerqueira,et al.  Lake tahoe invitation meeting 2002 , 2003, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[60]  Jonathan R. Lindner,et al.  Noninvasive Assessment of Angiogenesis by Ultrasound and Microbubbles Targeted to &agr;v-Integrins , 2003, Circulation.

[61]  P. Yalamanchili,et al.  Design, synthesis, and evaluation of radiolabeled integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy. , 2003, Cancer biotherapy & radiopharmaceuticals.

[62]  Shelton D Caruthers,et al.  Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. , 2003, Circulation.

[63]  Shelton D Caruthers,et al.  Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. , 2003, Cancer research.

[64]  Jiri Sklenar,et al.  Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. , 2003, Circulation.

[65]  Roy Bicknell,et al.  The development of [(124)I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. , 2002, Cancer research.

[66]  B. Rutt,et al.  Application of the static dephasing regime theory to superparamagnetic iron‐oxide loaded cells , 2002, Magnetic resonance in medicine.

[67]  P. Valent,et al.  Characterization of 123I‐vascular endothelial growth factor–binding sites expressed on human tumour cells: Possible implication for tumour scintigraphy , 2001, International journal of cancer.

[68]  R O Bonow,et al.  Clinical trials in coronary angiogenesis: issues, problems, consensus: An expert panel summary. , 2000, Circulation.

[69]  M. Bednarski,et al.  Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. , 1998, Nature medicine.

[70]  H L Kundel,et al.  Magnetic resonance imaging of fluorine in rats infused with artificial blood. , 1985, Investigative radiology.