New exact solutions of Burgers’ type equations with conformable derivative

In this paper, the new exact solutions for some nonlinear partial differential equations are obtained within the newly established conformable derivative. We use the first integral method to establish the exact solutions for time-fractional Burgers’ equation, modified Burgers’ equation, and Burgers–Korteweg–de Vries equation. We report that this method is efficient and it can be successfully used to obtain new analytical solutions of nonlinear FDEs.

[1]  Yücel Çenesiz,et al.  THE NEW SOLUTION OF TIME FRACTIONAL WAVE EQUATION WITH CONFORMABLE FRACTIONAL DERIVATIVE DEFINITION , 2015 .

[2]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[3]  A. Bekir,et al.  The First Integral Method for Exact Solutions of Nonlinear Fractional Differential Equations , 2015 .

[4]  Hadi Rezazadeh,et al.  The first integral method for Wu–Zhang system with conformable time-fractional derivative , 2016 .

[5]  Ahmet Bekir,et al.  Exact solutions of nonlinear fractional differential equations by (G′/G)-expansion method , 2013 .

[6]  M. Dehghan,et al.  Solving nonlinear fractional partial differential equations using the homotopy analysis method , 2010 .

[7]  Nasir Taghizadeh,et al.  The first-integral method applied to the Eckhaus equation , 2012, Appl. Math. Lett..

[8]  Roshdi Khalil,et al.  CONFORMABLE FRACTIONAL HEAT DIFFERENTIAL EQUATION , 2014 .

[9]  Zhaosheng Feng,et al.  On explicit exact solutions to the compound Burgers-KdV equation , 2002 .

[10]  M. Sababheh,et al.  A new definition of fractional derivative , 2014, J. Comput. Appl. Math..

[11]  EslamiMostafa,et al.  The first integral method for Wu---Zhang system with conformable time-fractional derivative , 2016 .

[12]  A. Esen,et al.  Numerical Solution of Time Fractional Burgers Equation by Cubic B-spline Finite Elements , 2016 .

[13]  A. Sheikhani,et al.  Exact solutions for the fractional differential equations by using the first integral method , 2015 .

[14]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[15]  I. Hammad,et al.  Fractional Fourier Series with Applications , 2014 .

[16]  J. Burgers A mathematical model illustrating the theory of turbulence , 1948 .

[17]  H. Bateman,et al.  SOME RECENT RESEARCHES ON THE MOTION OF FLUIDS , 1915 .

[18]  Yücel Çenesiz,et al.  On the Solution of Burgers’ Equation with the New Fractional Derivative , 2015 .

[19]  Delfim F. M. Torres,et al.  A Conformable Fractional Calculus on Arbitrary Time Scales , 2015, 1505.03134.

[20]  Thabet Abdeljawad,et al.  On conformable fractional calculus , 2015, J. Comput. Appl. Math..

[21]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[22]  H. Srivastava,et al.  Local Fractional Integral Transforms and Their Applications , 2015 .

[23]  A. Alsaedi,et al.  New properties of conformable derivative , 2015 .

[24]  Alaattin Esen,et al.  A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers’ equation , 2015, Journal of Mathematical Chemistry.

[26]  Hong Wang,et al.  Fast finite volume methods for space-fractional diffusion equations , 2015 .

[27]  Hong-qing Zhang,et al.  Fractional sub-equation method and its applications to nonlinear fractional PDEs , 2011 .

[28]  A. Bekir,et al.  Analytic treatment of nonlinear evolution equations using first integral method , 2012 .

[29]  M. Kaplan,et al.  Exponential rational function method for space–time fractional differential equations , 2016 .

[30]  Shaher Momani,et al.  Homotopy perturbation method for nonlinear partial differential equations of fractional order , 2007 .

[31]  Won Sang Chung,et al.  Fractional Newton mechanics with conformable fractional derivative , 2015, J. Comput. Appl. Math..

[32]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[33]  A. Bekir,et al.  Analytical Approach for the Space-time Nonlinear Partial Differential Fractional Equation , 2014 .