Predictive uncertainty of a nearshore bed evolution model

Abstract Predictions of nearshore depth evolution using process-based numerical simulation models contain inherent uncertainties owing to model structural deficiencies, measurement errors, and parameter uncertainty. This paper quantifies the parameter-induced predictive uncertainty of the cross-shore depth evolution model Unibest-TC by applying the Bayesian Generalised Likelihood Uncertainty Estimation methodology to modelling depth evolution at Egmond aan Zee (Netherlands). This methodology works with multiple sets of parameter values sampled uniformly in feasible parameter space and assigns a likelihood value to each parameter set. Acceptable simulations (i.e., based on parameter sets with a nonzero likelihood) were found for a wide range of parameter values owing to parameter interdependence and insensitivity. The 95% uncertainty prediction interval of bed levels after the 33 days prediction period was largest (0.5–1 m) near the sandbar crests that characterize the Egmond depth profile, reducing to near-zero values in the sandbar troughs and the offshore area. The prediction interval built up during storms (when sediment transport rates are largest) and remained the same or even reduced slightly during less-energetic conditions. The prediction uncertainty ranges bracket the observations near the inner-bar crest, its seaward flank, and at the seaward flank of the outer bar, suggesting that elsewhere model structural errors (and, potentially, measurement errors) dominate over parameter errors. The interdependence and the non-Gaussian marginal posterior distribution functions of the free model parameters cast doubt on the ability of commonly applied multivariate normal distribution functions to estimate parameter uncertainty.

[1]  H. N. Southgate,et al.  Calibration and verification of a parametric wave model on barred beaches , 2003 .

[2]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[3]  Ida Brøker,et al.  Cross-shore profile models , 1993 .

[4]  E. Thornton,et al.  Morphodynamic modeling of an embayed beach under wave group forcing , 2004 .

[5]  B. Ruessink,et al.  Analysis of observed two- and three-dimensional nearshore bar behaviour , 2000 .

[6]  M. Longuet-Higgins,et al.  Radiation stresses in water waves; a physical discussion, with applications , 1964 .

[7]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: The question of parameter observability and uniqueness , 1983 .

[8]  W. Bouten,et al.  Validity of First-Order Approximations to Describe Parameter Uncertainty in Soil Hydrologic Models , 2002 .

[9]  Stig E. Sand Long Wave Problems in Laboratory Models , 1982 .

[10]  Shunqi Pan,et al.  The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based Profile models , 2003 .

[11]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[12]  L. Rijn Principles of sediment transport in rivers, estuaries and coastal seas , 1993 .

[13]  M. Stive,et al.  Quasi-3D Modelling of Nearshore Currents , 1987 .

[14]  P. R. Johnston,et al.  Parameter optimization for watershed models , 1976 .

[15]  Nathaniel G. Plant,et al.  Prediction skill of nearshore profile evolution models , 2004 .

[16]  S. Elgar,et al.  Wave transformation across the inner surf zone , 1996 .

[17]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[18]  Samuel H. Brooks A Discussion of Random Methods for Seeking Maxima , 1958 .

[19]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[20]  B. G. Ruessink,et al.  Process-based modelling of a shoreface nourishment , 2004 .

[21]  J. A. Roelvink,et al.  Field Validation and Application of a Coastal Profile Model , 1996 .

[22]  Stefan Uhlenbrook,et al.  On the value of experimental data to reduce the prediction uncertainty of a process-oriented catchment model , 2005, Environ. Model. Softw..

[23]  Steve Elgar,et al.  Observations of sand bar evolution on a natural beach , 1998 .

[24]  M. Rycroft,et al.  Computer modelling in the environmental sciences , 1991 .

[25]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[26]  Michele Capobianco,et al.  A summary of European experience with shore nourishment , 2002 .

[27]  J. Ribberink Bed-load transport for steady flows and unsteady oscillatory flows , 1998 .

[28]  J. A. Battjes,et al.  ENERGY LOSS AND SET-UP DUE TO BREAKING OF RANDOM WAVES , 1978 .

[29]  J. A. Roelvink,et al.  Dissipation in random wave groups incident on a beach , 1993 .

[30]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[31]  H. N. Southgate,et al.  DETERMINISTIC PROFILE MODELLING OF NEARSHORE PROCESSES - PART 2: SEDIMENT TRANSPORT AND BEACH PROFILE DEVELOPMENT , 1993 .

[32]  John D. Fenton,et al.  A Fourier approximation method for steady water waves , 1981, Journal of Fluid Mechanics.

[33]  Howard N. Southgate,et al.  Transition Zone Width and Implications for Modeling Surfzone Hydrodynamics , 1991 .

[34]  Marc F. P. Bierkens,et al.  The identifiability of parameters in a water quality model of the Biebrza River, Poland , 1997 .

[35]  B. G. Ruessink,et al.  Calibration of nearshore process models—application of a hybrid genetic algorithm , 2005 .

[36]  Micha Werner,et al.  Reduction of Monte-Carlo simulation runs for uncertainty estimation in hydrological modelling , 2003 .

[37]  R. Spear Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis , 1980 .

[38]  Steve Elgar,et al.  Wave-Induced Sediment Transport and Sandbar Migration , 2003, Science.

[39]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[40]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[41]  J. A. Battjes,et al.  Calibration and Verification of a Dissipation Model for Random Breaking Waves , 1985 .

[42]  E. Thornton,et al.  Vertical flow structure during Sandy Duck: observations and modeling , 2004 .