Acquisition of spatial knowledge of architectural spaces via active and passive aural explorations by the blind.

Navigation within a closed environment requires analysis of a variety of acoustic cues, a task that is well developed in many visually impaired individuals, and for which sighted individuals rely almost entirely on visual information. Focusing on the needs of the blind, the creation of cognitive maps for spaces such as home or office buildings can be a long process, for which the individual may repeat various paths numerous times. While this action is typically performed by the individual on-site, it is of some interest to investigate to what point this task can be performed offsite, at the individual’s discretion. In short, is it possible for an individual to learn an architectural environment without being physically present? If so, such a system could prove beneficial for preparing for navigation in new and unknown environments. A comparison of three learning scenarios has been performed: in-situ real displacement, passive playback of recorded navigation (binaural and Ambisonic), and active navigation in virtual auditory environment architecture. For all conditions, only acoustic cues are employed. This research is the result of collaboration between researchers in psychology and acoustics on the issue of interior spatial cognition.