Progress in computer simulations of liquid crystals

This article reviews some of the recent progress in the simulation of liquid crystals across a range of length and time scales. Simulators now have an extensive range of models at their disposal, ranging from fully atomistic studies where each atom is represented in a simulation, via hard or soft anisotropic potentials, to lattice models and director-based simulation methods. Each of these provide access to different phenomena. The progress towards accurate atomistic modelling of nematics is discussed in detail, pointing to improvements in force fields made recently and discussing the progress towards accurate prediction of material properties. Three material properties are discussed in detail: elastic constants, rotational viscosity and helical twisting powers. The simulation methods that can be employed to extract such properties are reviewed and the insights provided by recent results from atomistic and coarse-grained models are discussed. The article points also to the recent success of coarse-grained modelling in helping to understand the structure of complex macromolecular liquid crystals: liquid crystal polymers and liquid crystal dendrimers in which the macromolecules contain different types of interaction site. Finally, it is worth noting that throughout Nature liquid crystals occur as the archetypal self-assembled materials; able to form well-defined self-organized structures, which are often ordered at the nanoscale. With this in mind, some perspectives on the future use of these materials are presented, with suggestions for how liquid crystal simulation can be used to help in the design of the next generation of nanoscale devices. Contents PAGE 1. Introduction 422 2. Simulation of liquid crystals: crossing the time and length scales 423 3. Simulation models for liquid crystal phases 424 4. Progress in atomistic simulations 428 4.1. Force fields for atomistic simulation of liquid crystals 428 4.2. Prediction of transition temperatures and structure in nematic fluids 431 5. Calculation of materials properties for atomistic and mesoscale models 435 5.1. Elastic constants 435 5.2. Rotational viscosity 438 5.3. Helical twisting powers 439 6. Coarse-grained simulations for complex liquid crystalline materials 444 6.1. A coarse-grained model for flexible macromolecular liquid crystals 444 6.2. Liquid crystal polymers 446 6.3. Liquid crystal dendrimers 447 7. Some perspectives on the future 450 Acknowledgements 451 References 451

[1]  Mark R. Wilson,et al.  Induced and spontaneous deracemization in bent-core liquid crystal phases and in other phases doped with bent-core molecules. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[3]  Colin Denniston,et al.  Hydrodynamics of domain growth in nematic liquid crystals. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Twisting power of bridged binaphthol derivatives: comparison of theory and experiment , 1998 .

[5]  E. Miguel Reexamining the phase diagram of the Gay—Berne fluid , 2002 .

[6]  S. Lecommandoux,et al.  Smectic C Structure and Backbone Confinement in Side-on Fixed Liquid Crystalline Polymers , 2000 .

[7]  Michael P. Allen,et al.  Molecular simulation and theory of liquid crystal surface anchoring , 1999 .

[8]  A. Poniewierski,et al.  Statistical theory of the elastic constants of nematic liquid crystals , 1979 .

[9]  Zhao-Qing Zhang,et al.  Lasing in chiral photonic structures , 2003 .

[10]  S. Hess,et al.  Direct computation of the twist elastic coefficient of a nematic liquid crystal via Monte Carlo simulations. , 2005, Physical review letters.

[11]  D. Cleaver,et al.  Computer simulation of a liquid-crystal anchoring transition. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Robert M. Richardson,et al.  Carbosilane Liquid Crystalline Dendrimers: From Molecular Architecture to Supramolecular Nanostructures , 2000 .

[13]  Mark R Wilson,et al.  Calculation of flexoelectric coefficients for a nematic liquid crystal by atomistic simulation. , 2004, The Journal of chemical physics.

[14]  Elastic constants from direct correlation functions in nematic liquid crystals: A computer simulation study , 2001, cond-mat/0107581.

[15]  D. Tildesley,et al.  The compression of polymer brushes under shear: the friction coefficient as a function of compression, shear rate and the properties of the solvent , 2005 .

[16]  Shamim Khan Account , 1991 .

[17]  David J. Earl,et al.  Predictions of molecular chirality and helical twisting powers: A theoretical study , 2003 .

[18]  Mark R. Wilson,et al.  Molecular dynamics simulations of a flexible liquid crystal , 1999 .

[19]  John W. Goodby,et al.  Handbook of liquid crystals , 1998 .

[20]  G. R. Luckhurst,et al.  A theory of orientational ordering in uniaxial liquid crystals composed of molecules with alkyl chains , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  Mark R. Wilson,et al.  Molecular dynamics simulations of flexible liquid crystal molecules using a Gay-Berne/Lennard-Jones model , 1997 .

[22]  Mimicking electrostatic interactions with a set of effective charges: a genetic algorithm , 2004 .

[23]  A. De Luca,et al.  Color-tunable organic microcavity laser array using distributed feedback. , 2005, Physical review letters.

[24]  C. Zannoni,et al.  Can nematic transitions be predicted by atomistic simulations? A computational study of the odd-even effect. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  Local structure in nematic and isotropic liquid crystals , 2003, cond-mat/0303653.

[26]  J. S. Pedersen,et al.  A small angle neutron scattering study of the conformation of a side chain liquid crystal poly(methacrylate) in the smectic C phase , 1997 .

[27]  A. Levelut,et al.  Invited Article. X-ray diffraction by mesomorphic comb-like polymers , 1992 .

[28]  Michael P. Allen,et al.  Advances in the Computer Simulations of Liquid Crystals , 2000 .

[29]  M. P. Allen,et al.  Transport properties of the hard ellipsoid fluid , 1993 .

[30]  G. Moro,et al.  Shape model for ordering properties of molecular dopants inducing chiral mesophases , 1996 .

[31]  I. Halliday,et al.  A lattice boltzmann scheme for a nematic-isotropic interface , 2004 .

[32]  G. Moro,et al.  Simple molecular model for induced cholesteric phases. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Christopher M. Care,et al.  Computer simulation of liquid crystals , 2005 .

[34]  B. Fung,et al.  A simplified approach to molecular dynamics simulations of liquid crystals with atom–atom potentials , 1994 .

[35]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems. XIX. Mesophases formed by the Gay-Berne model mesogen , 1990 .

[36]  Michael P. Allen,et al.  Computer simulation of liquid crystals , 1996 .

[37]  Roland Faller Automatic coarse graining of polymers , 2004 .

[38]  S. Sarman,et al.  Statistical mechanics of viscous flow in nematic fluids , 1993 .

[39]  M. P. Allen,et al.  Molecular simulation and theory of liquid crystals: chiral parameters, flexoelectric coefficients, and elastic constants , 2001 .

[40]  Alexander D. MacKerell,et al.  CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model , 2004, J. Comput. Chem..

[41]  M. P. Allen,et al.  EFFECTS OF ELONGATION ON THE PHASE BEHAVIOR OF THE GAY-BERNE FLUID , 1998 .

[42]  Generalized lattice Boltzmann algorithm for the flow of a nematic liquid crystal with variable order parameter. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Y. K. Levine,et al.  A dissipative particle dynamics description of liquid-crystalline phases. I. Methodology and applications. , 2005, The Journal of chemical physics.

[44]  D. Cleaver,et al.  Ordering of hard particles between hard walls , 2001 .

[45]  L. E. Chirlian,et al.  Atomic charges derived from electrostatic potentials: A detailed study , 1987 .

[46]  Viscosities of the Gay-Berne nematic liquid crystal. , 1995, Physical review letters.

[47]  S. Lecommandoux,et al.  Effect of the Spacer and Aliphatic Tail Length on the Conformation of “Side-on Fixed” Liquid Crystal Polyacrylates: “SANS” Experiments , 1996 .

[48]  Cees W. M. Bastiaansen,et al.  New functional polymers for liquid crystal displays review of some recent developments , 2000 .

[49]  P. Keller,et al.  On the structure and the chain conformation of side-chain liquid crystal polymers , 1995 .

[50]  Mark R. Wilson,et al.  Computer simulations of soft repulsive spherocylinders , 2001 .

[51]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[52]  J. Ilnytskyi,et al.  Rotational viscosities of Gay-Berne mesogens , 2002 .

[53]  Allen,et al.  Isotropic-nematic interface of soft spherocylinders , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  H. Ringsdorf,et al.  Model considerations and examples of enantiotropic liquid crystalline polymers. Polyreactions in ordered systems, 14 , 1978 .

[55]  M. Godinho,et al.  A small angle neutron scattering study of the effect of molecular weight on the conformation of side chain liquid crystal polymers in a smectic phase , 1999 .

[56]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems: XXI. Parametrization of the Gay-Berne potential for model mesogens , 1993 .

[57]  S. Clark,et al.  Calculation of the rotational viscosity of a nematic liquid crystal , 2002 .

[58]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[59]  C. Rosini,et al.  Conformational and Configurational Analysis of 4,4‘-Biphenanthryl Derivatives and Related Helicenes by Circular Dichroism Spectroscopy and Cholesteric Induction in Nematic Mesophases , 1996 .

[60]  M. P. Allen,et al.  Effect of the attractive interactions on the phase behavior of the Gay–Berne liquid crystal model , 1996 .

[61]  Mark R. Wilson,et al.  Calculating the helical twisting power of chiral dopants , 2001 .

[62]  Allen,et al.  Diffusion coefficient increases with density in hard ellipsoid liquid crystals. , 1990, Physical review letters.

[63]  Siewert J Marrink,et al.  Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. , 2005, Chemistry and physics of lipids.

[64]  D. Cleaver,et al.  Computer simulations of the elastic properties of liquid crystals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[65]  D. Broer,et al.  Viscoelastic liquid crystal colloids for the continuous processing of twisted nematic electro-optical cells , 2001 .

[66]  N. Clark,et al.  Entropy-stabilized smectic C phase in a system of zigzag-shaped molecules. , 2004, Physical review letters.

[67]  S. Ponomarenko,et al.  LIQUID CRYSTALLINE DENDRIMER OF THE FIFTH GENERATION : FROM LAMELLAR TO COLUMNAR STRUCTURE IN THERMOTROPIC MESOPHASES , 1999 .

[68]  C. Zannoni,et al.  Antiphase structures in polar smectic liquid crystals and their molecular origin , 1996 .

[69]  M. P. Allen,et al.  Structure of trans-4-(trans-4-n-pentylcyclohexyl)cyclohexylcarbonitrile (CCH5) in the isotropic and nematic phases: a computer simulation study , 1992 .

[70]  Allen Calculating the helical twisting power of dopants in a liquid crystal by computer simulation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[71]  A. Ferrarini,et al.  On the assessment of molecular chirality , 1998 .

[72]  M. P. Allen,et al.  Computer Simulations of Mesogenic Molecules Using Realistic Atom-Atom Potentials , 1991 .

[73]  S. Sarman Nonequilibrium molecular dynamics of liquid crystal shear flow , 1995 .

[74]  George A. Kaminski,et al.  Accurate prediction of absolute acidity constants in water with a polarizable force field: substituted phenols, methanol, and imidazole. , 2005, The journal of physical chemistry. B.

[75]  A. V. Zakharov,et al.  Rotational viscosity in a nematic liquid crystal: a theoretical treatment and molecular dynamics simulation. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[76]  M. P. Neal,et al.  Helical twisting power and chirality indices , 2004 .

[77]  Siewert J Marrink,et al.  Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. , 2004, Journal of the American Chemical Society.

[78]  S. Žumer,et al.  Hydrodynamics of pair-annihilating disclination lines in nematic liquid crystals. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Robert J. Woods,et al.  Derivation of net atomic charges from molecular electrostatic potentials , 1990 .

[80]  J. Watanabe,et al.  Enhancement of twisting power in the chiral nematic phase by introducing achiral banana-shaped molecules. , 2002, Journal of the American Chemical Society.

[81]  Siewert J Marrink,et al.  Molecular structure of the lecithin ripple phase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Claudio Zannoni,et al.  Advances in the Computer Simulations of Liquid Crystals , 2000 .

[83]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[84]  Surface Tension of the Isotropic-Nematic Interface , 2000, cond-mat/0008056.

[85]  L. F. Rull Phase diagram of a liquid crystal model: A computer simulation study , 1995 .

[86]  Jaroslav M. Ilnytskyi,et al.  Computer simulations of a liquid crystalline dendrimer in liquid crystalline solvents , 2003 .

[87]  R. Lathe Phd by thesis , 1988, Nature.

[88]  A. J. Slaney,et al.  Twist inversion in a cholesteric material containing a single chiral centre , 1992 .

[89]  Philip Birch,et al.  A real-time closed-loop liquid crystal adaptive optics system: first results , 1997 .

[90]  Benoît Roux,et al.  Molecular dynamics study of hydration in ethanol-water mixtures using a polarizable force field. , 2005, The journal of physical chemistry. B.

[91]  Andrew P. J. Emerson,et al.  Monte Carlo investigations of a Gay—Berne liquid crystal , 1993 .

[92]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems. XXVI. Monte Carlo investigations of a Gay–Berne discotic at constant pressure , 1996 .

[93]  G. V. Paolini,et al.  Intrinsic frame transport for a model of nematic liquid crystal , 1997 .

[94]  Kurt Kremer,et al.  Simulation of polymer melts. I. Coarse‐graining procedure for polycarbonates , 1998 .

[95]  M. Brehmer,et al.  Modification of the twist angle in chiral nematic polymer films by photoisomerization of the chiral dopant , 1999 .

[96]  W. D. Otter,et al.  Liquid–crystalline ordering in rod—coil diblock copolymers studied by mesoscale simulations , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[97]  J M Yeomans,et al.  Numerical calculations of the phase diagram of cubic blue phases in cholesteric liquid crystals. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  Thomas Geelhaar,et al.  Liquid-crystalline reference compounds , 1989 .

[99]  M. P. Allen Molecular simulation and theory of the isotropic–nematic interface , 2000 .

[100]  F. C. Frank,et al.  I. Liquid crystals. On the theory of liquid crystals , 1958 .

[101]  Masayuki Yokota,et al.  Polymer-stabilized liquid crystal blue phases , 2002, Nature materials.

[103]  Jonathan W. Essex,et al.  Molecular dynamics simulation of the hydrocarbon region of a biomembrane using a reduced representation model , 2001, J. Comput. Chem..

[104]  Martin Schadt,et al.  Optical patterning of multi-domain liquid-crystal displays with wide viewing angles , 1996, Nature.

[105]  Mark R. Wilson,et al.  Molecular dynamics simulation of main chain liquid crystalline polymers , 1998 .

[106]  Mark R. Wilson,et al.  Calculation of helical twisting power for liquid crystal chiral dopants , 2000 .

[107]  M. Walker,et al.  Mammalian class I myosin, Myo1b, is monomeric and cross-links actin filaments as determined by hydrodynamic studies and electron microscopy. , 2005, Biophysical journal.

[108]  Ping Sheng,et al.  Generalized hydrodynamic equations for nematic liquid crystals , 1998 .

[109]  M. P. Allen,et al.  Simultaneous calculation of the helical pitch and the twist elastic constant in chiral liquid crystals from intermolecular torques , 2002 .

[110]  D. Frenkel,et al.  Structure of the hard ellipsoid fluid , 1990 .

[111]  B. Berne Modification of the overlap potential to mimic a linear site-site potential , 1981 .

[112]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[113]  A. Polimeno,et al.  Dissipative Particle Dynamics Approach to Mesophase Formation and Behaviour , 2005 .

[114]  V. Percec,et al.  Rational Design of the First Nonspherical Dendrimer Which Displays Calamitic Nematic and Smectic Thermotropic Liquid Crystalline Phases , 1995 .

[115]  David J. Earl,et al.  Helical twisting power and scaled chiral indices , 2003 .

[116]  Theory and simulation of the nematic zenithal anchoring coefficient. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[117]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[118]  D. Frenkel,et al.  Thermodynamic stability of a smectic phase in a system of hard rods , 1988, Nature.

[119]  Andrew G. Glen,et al.  APPL , 2001 .

[120]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[121]  M. Osipov,et al.  Helical twisting power and circular dichroism in nematic liquid crystals doped with chiral molecules , 2001 .

[122]  W. Maier,et al.  Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes , 1958 .

[123]  S. D. Hudson,et al.  Self-assembly of amphiphilic dendritic dipeptides into helical pores , 2004, Nature.

[124]  A. Di Matteo,et al.  Correlation between molecular structure and helicity of induced chiral nematics in terms of short-range and electrostatic-induction interactions. The case of chiral biphenyls. , 2001, Journal of the American Chemical Society.

[125]  Leonor Saiz,et al.  Computer simulation studies of model biological membranes. , 2002, Accounts of chemical research.

[126]  Claudio Zannoni,et al.  Molecular design and computer simulations of novel mesophases , 2001 .

[127]  S. Kuwajima,et al.  Computing the rotational viscosity of nematic liquid crystals by an atomistic molecular dynamics simulation , 2000 .

[128]  Andro Chanishvili,et al.  Lasing in Dye‐Doped Cholesteric Liquid Crystals: Two New Tuning Strategies , 2004 .

[129]  Numerical Prediction of Twisting Power for Chiral Dopants , 1996 .

[130]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[131]  Lorna M. Stimson,et al.  Molecular dynamics simulations of side chain liquid crystal polymer molecules in isotropic and liquid-crystalline melts. , 2005, The Journal of chemical physics.

[132]  M. P. Neal,et al.  Computer simulations using a longitudinal quadrupolar Gay–Berne model: effect of the quadrupole magnitude on the formation of the smectic phase , 1998 .

[133]  G. Love,et al.  Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator. , 1997, Applied Optics.

[134]  Jaroslav M. Ilnytskyi,et al.  A domain decomposition molecular dynamics program for the simulation of flexible molecules of spherically-symmetrical and nonspherical sites. II. Extension to NVT and NPT ensembles , 2002 .

[135]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[136]  A. V. Zakharov,et al.  Rotational viscosity, dynamic phenomena, and dielectric properties in a long-chain liquid crystal: NMR study and theoretical treatment. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[137]  David J. Willock,et al.  The relaxation of molecular crystal structures using a distributed multipole electrostatic model , 1995, J. Comput. Chem..

[138]  Domain Motion in Confined Liquid Crystals , 2001, cond-mat/0108112.

[139]  A shape model for the twisting power of chiral solutes in nematics , 1995 .

[140]  M. P. Allen,et al.  Molecular-dynamics study of the nematic-isotropic interface. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[141]  D. J. Tildesley,et al.  Dissipative Particle Dynamics Simulations of Grafted Polymer Chains between Two Walls , 2000 .

[142]  G. Gottarelli,et al.  Determination of absolute configuration of helicenes and related biaryls from calculation of helical twisting powers by the surface chirality model , 1999 .

[143]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[144]  J. B. Davies,et al.  FINITE-ELEMENT MODELLING IN 2-D OF NEMATIC LIQUID CRYSTAL STRUCTURES , 1996 .

[145]  G. R. Luckhurst,et al.  Molecular conformation of a polyaramid in nematic solution from small angle neutron scattering and comparison with theory , 1998 .

[146]  K. D. Singer,et al.  Self-organization of supramolecular helical dendrimers into complex electronic materials , 2002, Nature.

[147]  Martin Schadt,et al.  LIQUID CRYSTAL MATERIALS AND LIQUID CRYSTAL DISPLAYS , 1997 .

[148]  Dirk Reith,et al.  Coarse Graining of Nonbonded Inter-Particle Potentials Using Automatic Simplex Optimization to Fit Structural Properties , 2000 .

[149]  George Jackson,et al.  A RE-EXAMINATION OF THE PHASE DIAGRAM OF HARD SPHEROCYLINDERS , 1996 .

[150]  Mark R. Wilson,et al.  Molecular dynamics simulations of liquid crystal phases using atomistic potentials , 1998 .

[151]  P. Lebwohl,et al.  Nematic-Liquid-Crystal Order—A Monte Carlo Calculation , 1972 .

[152]  C. Zannoni,et al.  Do thermotropic biaxial nematics exist? A Monte Carlo study of biaxial Gay–Berne particles , 2000 .

[153]  Mark R. Wilson,et al.  Molecular dynamics calculation of elastic constants in Gay-Berne nematic liquid crystals , 1996 .

[154]  David J. Earl,et al.  Calculations of helical twisting powers from intermolecular torques. , 2004, The Journal of chemical physics.

[155]  P. Keller,et al.  Neutron scattering study and discussion of the backbone conformation in the nematic phase of a side chain polymer , 1991 .

[156]  C. P. Mason,et al.  The isotropic–nematic phase transition in uniaxial hard ellipsoid fluids: Coexistence data and the approach to the Onsager limit , 1996 .

[157]  David L. Cheung,et al.  Parametrization and validation of a force field for liquid-crystal forming molecules. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[158]  Roland Faller,et al.  Modeling of poly(isoprene) melts on different scales , 2002 .

[159]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.