The Maximum or Minimum Number of Rational Points on Genus Three Curves over Finite Fields

We show that for all finite fields Fq, there exists a curve C over Fq of genus 3 such that the number of rational points on C is within 3 of the Serre–Weil upper or lower bound. For some q, we also obtain improvements on the upper bound for the number of rational points on a genus 3 curve over Fq.

[1]  Craig Kent Letter from K , 1854, The Dental register.

[2]  S. Lang,et al.  Abelian varieties over finite fields , 2005 .

[3]  G. Otremba Zur Theorie der hermiteschen Formen in imaginär-quadratischen Zahlkörpern. , 1971 .

[4]  H. M. Stark,et al.  On the Riemann Hypothesis in Hyperelliptic Function Fields , 1973 .

[5]  Kenji Ueno,et al.  Principally polarized abelian variaties dimension two or three are Jacobian varieties , 1973 .

[6]  Serge Lang,et al.  Abelian varieties , 1983 .

[7]  J. Voloch,et al.  Weierstrass Points and Curves Over Finite Fields , 1986 .

[8]  C. Skinner The Diophantine equation $x^2=4q^n-4q+1$. , 1989 .

[9]  D. Hoffmann,et al.  On positive definite hermitian forms , 1991 .

[10]  Gerhard Frey,et al.  Curves of genus 2 covering elliptic curves and an arithmetical application , 1991 .

[11]  T. Ibukiyama On rational points of curves of genus $3$ over finite fields , 1993 .

[12]  S. Hansen Rational Points on Curves over Finite Fields , 1995 .

[13]  Everett W. Howe Principally polarized ordinary abelian varieties over finite fields , 1995 .

[14]  Kristin E. Lauter Ray Class Field Constructions of Curves over Finite Fields with Many Rational Points , 1996, ANTS.

[15]  Harald Niederreiter,et al.  Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places , 1997 .

[16]  Harald Niederreiter,et al.  Drinfeld modules of rank 1 and algebraic curves with many rational points. II , 1997 .

[17]  Roland Auer,et al.  Ray class fields of global function fields with many rational places , 1998 .

[18]  Everett W. Howe,et al.  Large torsion subgroups of split Jacobians of curves of genus two or three , 1998 .

[19]  Kristin Lauter,et al.  Improved upper bounds for the number of rational points on algebraic curves over finite fields , 1999 .

[20]  E. Cohn The Diophantine equation x2 , 1999 .

[21]  A Formula for Constructing Curves over Finite Fields with Many Rational Points , 1999 .

[22]  Harald Niederreiter,et al.  Drinfeld Modules of Rank 1 and Algebraic Curves with Many Rational Points , 1999 .

[23]  Kristin Lauter Non-existence of a curve over ₃ of genus 5 with 14 rational points , 1999 .

[24]  Marcel van der Vlugt,et al.  Tables of curves with many points , 2000, Math. Comput..

[25]  Geometric Methods for Improving the Upper Bounds on the Number of Rational Points on Algebraic Curves over Finite Fields , 2001, math/0104247.

[26]  J. Serre Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini , 2003 .

[27]  Résumé des cours de 1983–1984 , 2003 .