The Maximum or Minimum Number of Rational Points on Genus Three Curves over Finite Fields
暂无分享,去创建一个
[1] Craig Kent. Letter from K , 1854, The Dental register.
[2] S. Lang,et al. Abelian varieties over finite fields , 2005 .
[3] G. Otremba. Zur Theorie der hermiteschen Formen in imaginär-quadratischen Zahlkörpern. , 1971 .
[4] H. M. Stark,et al. On the Riemann Hypothesis in Hyperelliptic Function Fields , 1973 .
[5] Kenji Ueno,et al. Principally polarized abelian variaties dimension two or three are Jacobian varieties , 1973 .
[6] Serge Lang,et al. Abelian varieties , 1983 .
[7] J. Voloch,et al. Weierstrass Points and Curves Over Finite Fields , 1986 .
[8] C. Skinner. The Diophantine equation $x^2=4q^n-4q+1$. , 1989 .
[9] D. Hoffmann,et al. On positive definite hermitian forms , 1991 .
[10] Gerhard Frey,et al. Curves of genus 2 covering elliptic curves and an arithmetical application , 1991 .
[11] T. Ibukiyama. On rational points of curves of genus $3$ over finite fields , 1993 .
[12] S. Hansen. Rational Points on Curves over Finite Fields , 1995 .
[13] Everett W. Howe. Principally polarized ordinary abelian varieties over finite fields , 1995 .
[14] Kristin E. Lauter. Ray Class Field Constructions of Curves over Finite Fields with Many Rational Points , 1996, ANTS.
[15] Harald Niederreiter,et al. Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places , 1997 .
[16] Harald Niederreiter,et al. Drinfeld modules of rank 1 and algebraic curves with many rational points. II , 1997 .
[17] Roland Auer,et al. Ray class fields of global function fields with many rational places , 1998 .
[18] Everett W. Howe,et al. Large torsion subgroups of split Jacobians of curves of genus two or three , 1998 .
[19] Kristin Lauter,et al. Improved upper bounds for the number of rational points on algebraic curves over finite fields , 1999 .
[20] E. Cohn. The Diophantine equation x2 , 1999 .
[21] A Formula for Constructing Curves over Finite Fields with Many Rational Points , 1999 .
[22] Harald Niederreiter,et al. Drinfeld Modules of Rank 1 and Algebraic Curves with Many Rational Points , 1999 .
[23] Kristin Lauter. Non-existence of a curve over ₃ of genus 5 with 14 rational points , 1999 .
[24] Marcel van der Vlugt,et al. Tables of curves with many points , 2000, Math. Comput..
[25] Geometric Methods for Improving the Upper Bounds on the Number of Rational Points on Algebraic Curves over Finite Fields , 2001, math/0104247.
[26] J. Serre. Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini , 2003 .
[27] Résumé des cours de 1983–1984 , 2003 .