Continuous-time linear predictive control and flatness: A module-theoretic setting with examples

A general flatness-based framework for linear continuous-time predictive control is presented. The mathematical setting, which is valid for multivariable systems, is provided by the algebraic theory of modules where a controllable system corresponds to a finitely generated free module over a principal ideal ring. Any basis of this free module is a flat output which yields an easy calculation of the predicted trajectory. This formalism permits one to handle non-minimum phase systems, system constraints, and to deal with additive perturbations. Three concrete case studies, namely a dc motor, a flexible system, and a cement mill, are analysed and simulations are given. These examples are written in such a way that any reader who is not familiar with module theory may nevertheless grasp the proposed control strategy.

[1]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[2]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[3]  C. Desoer,et al.  Multivariable Feedback Systems , 1982 .

[4]  A. Ilchmann Time-varying linear systems and invariants of system equivalence , 1985 .

[5]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[6]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[7]  M. B. Zarrop,et al.  Book Review: Adaptive Optimal Control: the thinking man's GPC , 1991 .

[8]  V. Wertz,et al.  Adaptive Optimal Control: The Thinking Man's G.P.C. , 1991 .

[9]  Peter J. Gawthrop,et al.  Continuous-time generalized predictive control (CGPC) , 1990, Autom..

[10]  M. Fliess Some basic structural properties of generalized linear systems , 1991 .

[11]  M. Fliess A remark on Willems' trajectory characterization of linear controllability , 1992 .

[12]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[13]  Ola Dahl,et al.  Path constrained robot control with limited torques-experimental evaluation , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[14]  Michel Fliess,et al.  Some remarks on the Brunovsky canonical form , 1993, Kybernetika.

[15]  Edward J. Davison,et al.  Performance limitations of non-minimum phase systems in the servomechanism problem, , 1993, Autom..

[16]  O. Dahl,et al.  Path-constrained robot control with limited torques-experimental evaluation , 1993, IEEE Trans. Robotics Autom..

[17]  M. Fliess,et al.  Une interprétation algébrique de la transformation de laplace et des matrices de transfert , 1994 .

[18]  B. Paden,et al.  A different look at output tracking: control of a VTOL aircraft , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[19]  Vincent Wertz,et al.  Multivariable linear quadratic control of a cement mill: An industrial application , 1994 .

[20]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[21]  Santosh Devasia,et al.  Optimal Output Trajectory Redesign for Invertible Systems , 1996 .

[22]  Ralf Rothfuß,et al.  Flatness based control of a nonlinear chemical reactor model , 1996, Autom..

[23]  Jean Lévine,et al.  A nonlinear approach to the control of magnetic bearings , 1996, IEEE Trans. Control. Syst. Technol..

[24]  Joachim Rudolph,et al.  Flachheit: Ein neuer Zugang zur Steuerung und Regelung nichtlinearer Systeme , 1997 .

[25]  Matthew R. James,et al.  Robust and accurate time-optimal path-tracking control for robot manipulators , 1997, IEEE Trans. Robotics Autom..

[26]  Michel Fliess,et al.  A flatness based control synthesis of linear systems and application to windshield wipers , 1997, 1997 European Control Conference (ECC).

[27]  Henri Bourlès,et al.  Finite poles and zeros of linear systems: An intrinsic approach , 1997 .

[28]  T. A. Badgwell,et al.  An Overview of Industrial Model Predictive Control Technology , 1997 .

[29]  Michel Fliess,et al.  Controllability and observability of linear delay systems: an algebraic approach , 1998 .

[30]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[31]  M. Fliess,et al.  Regulation of non-minimum phase outputs: a flatness based approach , 1998 .

[32]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[33]  J. Lévine,et al.  Are there New Industrial Perspectives in the Control of Mechanical Systems , 1999 .

[34]  Linear predictive control revisited: A flatness based approach , 1999, 1999 European Control Conference (ECC).

[35]  Magnus Egerstedt,et al.  Trajectory planning in the infinity norm for linear control systems , 1999 .

[36]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[37]  B. Kouvaritakis Recent developments in generalized predictive control for continuous-time systems , 1999 .

[38]  M. Fliess,et al.  From PID to Model Predictive Control: A Flatness Based Approach , 2000 .

[39]  B. Bulut,et al.  Industrial Application of Model Based Predictive Control , 2000 .