On the Emergence of Quantum Boltzmann Fluctuation Dynamics near a Bose–Einstein Condensate

[1]  Jory Griffin Derivation of the Linear Boltzmann Equation from the Damped Quantum Lorentz Gas with a General Scatterer Configuration , 2022, Annales Henri Poincaré.

[2]  G. Staffilani,et al.  Uniqueness of solutions to the spectral hierarchy in kinetic wave turbulence theory , 2021, Physica D: Nonlinear Phenomena.

[3]  Benjamin Schlein,et al.  Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime , 2021, Mathematical Physics, Analysis and Geometry.

[4]  Lei Wu,et al.  On the quantum Boltzmann equation near Maxwellian and vacuum , 2021, Journal of Differential Equations.

[5]  Shunlin Shen,et al.  The rigorous derivation of the T2 focusing cubic NLS from 3D , 2021 .

[6]  Jacky Chong Dynamics of large boson systems with attractive interaction and a derivation of the cubic focusing NLS equation in R3 , 2021 .

[7]  Phan Thanh Nam,et al.  Bosonization of Fermionic Many-Body Dynamics , 2021, Annales Henri Poincaré.

[8]  Seok-Bae Yun,et al.  The Relativistic Quantum Boltzmann Equation Near Equilibrium , 2020, Archive for Rational Mechanics and Analysis.

[9]  L. Desvillettes,et al.  About the Use of Entropy Production for the Landau–Fermi–Dirac Equation , 2020, Journal of Statistical Physics.

[10]  P. T. Nam,et al.  Two-term expansion of the ground state one-body density matrix of a mean-field Bose gas , 2020, Calculus of Variations and Partial Differential Equations.

[11]  M. Pulvirenti,et al.  On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Weak Convergence , 2020, Communications in Mathematical Physics.

[12]  R. Seiringer,et al.  Asymptotic expansion of low-energy excitations for weakly interacting bosons , 2020, Forum of Mathematics, Sigma.

[13]  Phan Thanh Nam,et al.  Correlation energy of a weakly interacting Fermi gas , 2020, Inventiones mathematicae.

[14]  P. Pickl,et al.  Beyond Bogoliubov dynamics , 2019, Pure and Applied Analysis.

[15]  Yu Deng,et al.  On the derivation of the wave kinetic equation for NLS , 2019, Forum of Mathematics, Pi.

[16]  J. Shatah,et al.  Onset of the wave turbulence description of the longtime behavior of the nonlinear Schrödinger equation , 2019, Inventiones mathematicae.

[17]  Ryan Denlinger,et al.  Small Data Global Well-Posedness for a Boltzmann Equation via Bilinear Spacetime Estimates , 2019, Archive for Rational Mechanics and Analysis.

[18]  B. Lods,et al.  Long time dynamics for the Landau-Fermi-Dirac equation with hard potentials , 2019, Journal of Differential Equations.

[19]  Natasa Pavlovic,et al.  Rigorous Derivation of a Ternary Boltzmann Equation for a Classical System of Particles , 2019, Communications in Mathematical Physics.

[20]  Zehua Zhao,et al.  Dynamical Hartree–Fock–Bogoliubov Approximation of Interacting Bosons , 2017, Annales Henri Poincaré.

[21]  Minh-Binh Tran,et al.  A reaction network approach to the convergence to equilibrium of quantum Boltzmann equations for Bose gases , 2016, ESAIM: Control, Optimisation and Calculus of Variations.

[22]  C. Hainzl Another proof of BEC in the GP-limit , 2020, 2011.09450.

[23]  R. Seiringer,et al.  Semiclassical approximation and critical temperature shift for weakly interacting trapped bosons , 2020, 2009.00992.

[24]  M. Grillakis,et al.  Global estimates for the Hartree–Fock–Bogoliubov equations , 2020, 2008.01753.

[25]  Z. Ammari,et al.  On Well-Posedness for General Hierarchy Equations of Gross–Pitaevskii and Hartree Type , 2020, Archive for Rational Mechanics and Analysis.

[26]  L. Saint-Raymond,et al.  Fluctuation Theory in the Boltzmann–Grad Limit , 2020, Journal of Statistical Physics.

[27]  B. Schlein,et al.  Bose–Einstein Condensation Beyond the Gross–Pitaevskii Regime , 2020, Annales Henri Poincaré.

[28]  Cosmin Bonchis,et al.  Vector partitions, multi-dimensional Faà di Bruno formulae and generating algorithms , 2020, Discret. Appl. Math..

[29]  R. Seiringer,et al.  Gross–Pitaevskii Limit of a Homogeneous Bose Gas at Positive Temperature , 2019, Archive for Rational Mechanics and Analysis.

[30]  P. T. Nam,et al.  Optimal Upper Bound for the Correlation Energy of a Fermi Gas in the Mean-Field Regime , 2018, Communications in mathematical physics.

[31]  M. Escobedo,et al.  On a system of equations for the normal fluid-condensate interaction in a Bose gas , 2018, Journal of Functional Analysis.

[32]  Minh-Binh Tran,et al.  Optimal local well-posedness theory for the kinetic wave equation , 2017, Journal of Functional Analysis.

[33]  S. Gustafson,et al.  Mathematical Concepts of Quantum Mechanics , 2006, Universitext.

[34]  P. Pickl,et al.  Higher Order Corrections to the Mean-Field Description of the Dynamics of Interacting Bosons , 2019, 1905.06164.

[35]  S. Cenatiempo Bogoliubov theory for dilute Bose gases: The Gross-Pitaevskii regime , 2019, Journal of Mathematical Physics.

[36]  L. Reichl,et al.  A kinetic equation for ultra-low temperature Bose–Einstein condensates , 2019, Journal of Physics A: Mathematical and Theoretical.

[37]  P. T. Nam,et al.  Derivation of 3D Energy-Critical Nonlinear Schrödinger Equation and Bogoliubov Excitations for Bose Gases , 2018, Communications in Mathematical Physics.

[38]  Jinyeop Lee On the Time Dependence of the Rate of Convergence Towards Hartree Dynamics for Interacting Bosons , 2018, Journal of Statistical Physics.

[39]  Xuguang Lu,et al.  The Spatially Homogeneous Boltzmann Equation for Bose–Einstein Particles: Rate of Strong Convergence to Equilibrium , 2018, Journal of Statistical Physics.

[40]  S. Olla,et al.  Transport of a quantum particle in a time-dependent white-noise potential , 2018, Journal of Mathematical Physics.

[41]  I. Gamba,et al.  On Existence and Uniqueness to Homogeneous Boltzmann Flows of Monatomic Gas Mixtures , 2018, Archive for Rational Mechanics and Analysis.

[42]  Lea Boßmann Derivation of the 1d nonlinear Schrödinger equation from the 3d quantum many-body dynamics of strongly confined bosons , 2018, Journal of Mathematical Physics.

[43]  J. Holmer,et al.  The derivation of the $$\mathbb {T}^{3}$$T3 energy-critical NLS from quantum many-body dynamics , 2018, Inventiones mathematicae.

[44]  A. Soffer,et al.  Mean field dynamics of a quantum tracer particle interacting with a boson gas , 2018, Journal of Functional Analysis.

[45]  A. Nouri,et al.  On a Boltzmann equation for Haldane statistics , 2017, Kinetic & Related Models.

[46]  P. Pickl,et al.  Derivation of the Bogoliubov Time Evolution for a Large Volume Mean-Field Limit , 2017, Annales Henri Poincaré.

[47]  P. T. Nam,et al.  Norm approximation for many-body quantum dynamics: Focusing case in low dimensions , 2017, Advances in Mathematics.

[48]  Xuguang Lu,et al.  Global existence of solutions of the Boltzmann equation for Bose–Einstein particles with anisotropic initial data , 2017, Journal of Functional Analysis.

[49]  Ryan Denlinger,et al.  Local Well-Posedness for Boltzmann’s Equation and the Boltzmann Hierarchy via Wigner Transform , 2017, Communications in Mathematical Physics.

[50]  P. Pickl,et al.  Derivation of the Time Dependent Gross–Pitaevskii Equation in Two Dimensions , 2016, Communications in Mathematical Physics.

[51]  Y. Pomeau,et al.  Statistical Physics of Non Equilibrium Quantum Phenomena , 2019, Lecture Notes in Physics.

[52]  S. Teufel,et al.  Derivation of the 1d Gross–Pitaevskii Equation from the 3d Quantum Many-Body Dynamics of Strongly Confined Bosons , 2018, Annales Henri Poincaré.

[53]  R. Seiringer,et al.  Bose–Einstein Condensation in a Dilute, Trapped Gas at Positive Temperature , 2018, Communications in Mathematical Physics.

[54]  T. Paul,et al.  On the Size of Chaos in the Mean Field Dynamics , 2017, Archive for Rational Mechanics and Analysis.

[55]  Minh-Binh Tran,et al.  On coupling kinetic and Schrödinger equations , 2016, Journal of Differential Equations.

[56]  Toan T. Nguyen,et al.  Uniform in Time Lower Bound for Solutions to a Quantum Boltzmann Equation of Bosons , 2016, Archive for Rational Mechanics and Analysis.

[57]  J. P. Solovej,et al.  The Dirac–Frenkel Principle for Reduced Density Matrices, and the Bogoliubov–de Gennes Equations , 2017, 1706.03082.

[58]  Jacky J. Chong,et al.  Uniform in N global well-posedness of the time-dependent Hartree–Fock–Bogoliubov equations in $$\mathbb {R}^{1+1}$$R1+1 , 2017, 1704.00955.

[59]  B. Schlein,et al.  Complete Bose–Einstein Condensation in the Gross–Pitaevskii Regime , 2017, 1703.04452.

[60]  B. Schlein,et al.  Quantum Many-Body Fluctuations Around Nonlinear Schrödinger Dynamics , 2015, 1509.03837.

[61]  Minh-Binh Tran,et al.  On the dynamics of finite temperature trapped Bose gases , 2016, 1609.07686.

[62]  Q. Liard On the mean-field approximation of many-boson dynamics , 2016, 1609.06254.

[63]  M. Porta,et al.  Mean Field Evolution of Fermions with Coulomb Interaction , 2016, 1608.05268.

[64]  I. Anapolitanos,et al.  A simple proof of convergence to the Hartree dynamics in Sobolev trace norms , 2016, 1608.01192.

[65]  Natavsa Pavlovi'c,et al.  On the scattering problem for infinitely many fermions in dimensions $d\geq3$ at positive temperature , 2016, 1607.07958.

[66]  Ryan Denlinger The Propagation of Chaos for a Rarefied Gas of Hard Spheres in the Whole Space , 2016, 1605.00589.

[67]  P. T. Nam,et al.  A note on the validity of Bogoliubov correction to mean-field dynamics , 2016, 1604.05240.

[68]  Xuguang Lu Long Time Convergence of the Bose–Einstein Condensation , 2016 .

[69]  P. Pickl,et al.  Kinetic energy estimates for the accuracy of the time-dependent Hartree-Fock approximation with Coulomb interaction , 2014, 1403.1488.

[70]  J. Holmer,et al.  Focusing Quantum Many-body Dynamics: The Rigorous Derivation of the 1D Focusing Cubic Nonlinear Schrödinger Equation , 2013, 1308.3895.

[71]  Younghun Hong,et al.  Global Well-Posedness of the NLS System for Infinitely Many Fermions , 2015, 1512.04674.

[72]  L. Saint-Raymond,et al.  From Hard Sphere Dynamics to the Stokes–Fourier Equations: An Analysis of the Boltzmann–Grad Limit , 2015, 1511.03057.

[73]  E. Kuz Rate of Convergence to Mean Field for Interacting Bosons , 2015 .

[74]  P. T. Nam,et al.  Ground states of large bosonic systems: The gross-pitaevskii limit revisited , 2015, 1503.07061.

[75]  M. Porta,et al.  Effective Evolution Equations from Quantum Dynamics , 2015, 1502.02498.

[76]  Yan Guo,et al.  On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation , 2014, 1412.1775.

[77]  J. Velázquez,et al.  On the Transfer of Energy Towards Infinity in the Theory of Weak Turbulence for the Nonlinear Schrödinger Equation , 2014, 1410.2073.

[78]  Zhihui Xie,et al.  Unconditional Uniqueness of the cubic Gross-Pitaevskii Hierarchy with Low Regularity , 2014, SIAM J. Math. Anal..

[79]  Mathieu Lewin,et al.  The Hartree Equation for Infinitely Many Particles I. Well-Posedness Theory , 2013, 1310.0603.

[80]  R. Seiringer,et al.  Unconditional Uniqueness for the Cubic Gross‐Pitaevskii Hierarchy via Quantum de Finetti , 2013, 1307.3168.

[81]  J. Velázquez,et al.  Blow-up rate estimates for the solutions of the bosonic Boltzmann-Nordheim equation , 2014 .

[82]  S. Herr,et al.  The Gross–Pitaevskii Hierarchy on General Rectangular Tori , 2014, 1410.5338.

[83]  J. Holmer,et al.  Correlation structures, Many-body Scattering Processes and the Derivation of the Gross-Pitaevskii Hierarchy , 2014, 1409.1425.

[84]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[85]  A. Pizzo,et al.  Dynamics of sound waves in an interacting Bose gas , 2014, 1406.1590.

[86]  Xuguang Lu The Boltzmann Equation for Bose–Einstein Particles: Regularity and Condensation , 2014 .

[87]  M. Pulvirenti,et al.  The Boltzmann–Grad limit of a hard sphere system: analysis of the correlation error , 2014, 1405.4676.

[88]  P. T. Nam,et al.  Collective Excitations of Bose Gases in the Mean-Field Regime , 2014, 1402.1153.

[89]  Mathieu Lewin,et al.  The Hartree equation for infinitely many particles, II: Dispersion and scattering in 2D , 2013, 1310.0604.

[90]  B. Schlein,et al.  Multivariate Central Limit Theorem in Quantum Dynamics , 2013, 1309.1702.

[91]  M. Porta,et al.  Mean–Field Evolution of Fermionic Systems , 2013, 1305.2768.

[92]  Philip T. Gressman,et al.  On the uniqueness of solutions to the periodic 3D Gross–Pitaevskii hierarchy , 2012, 1212.2987.

[93]  Thomas Chen,et al.  Derivation of the Cubic NLS and Gross–Pitaevskii Hierarchy from Manybody Dynamics in d = 3 Based on Spacetime Norms , 2011, 1111.6222.

[94]  M. Grillakis,et al.  Beyond mean field: On the role of pair excitations in the evolution of condensates , 2013, Journal of Fixed Point Theory and Applications.

[95]  M. Briant,et al.  On the Cauchy Problem for the Homogeneous Boltzmann–Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Moments , 2013, 1310.7220.

[96]  M. Grillakis,et al.  Pair Excitations and the Mean Field Approximation of Interacting Bosons, I , 2013, Communications in Mathematical Physics.

[97]  A. Nouri,et al.  Bose Condensates in Interaction with Excitations: A Two-Component Space-Dependent Model Close to Equilibrium , 2013, 1307.3012.

[98]  P. T. Nam,et al.  Fluctuations around Hartree states in the mean-field regime , 2013, 1307.0665.

[99]  J. Lukkarinen,et al.  Derivation of a matrix-valued Boltzmann equation for the Hubbard model , 2013, 1306.0934.

[100]  M. Escobedo,et al.  On the Theory of Weak Turbulence for the Nonlinear Schr\"odinger Equation , 2013, 1305.5746.

[101]  Thomas Chen,et al.  Derivation in Strong Topology and Global Well-Posedness of Solutions to the Gross-Pitaevskii Hierarchy , 2013, 1305.1404.

[102]  Matthew J. Davis,et al.  Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics , 2013 .

[103]  Phan Thanh Nam,et al.  Derivation of Hartree's theory for generic mean-field Bose systems , 2013, 1303.0981.

[104]  Xuguang Lu The Boltzmann Equation for Bose-Einstein Particles: Condensation in Finite Time , 2013 .

[105]  J. Holmer,et al.  On the Rigorous Derivation of the 2D Cubic Nonlinear Schrödinger Equation from 3D Quantum Many-Body Dynamics , 2012, 1212.0787.

[106]  M. Grillakis,et al.  Pair Excitations and the Mean Field Approximation of Interacting Bosons, I , 2012, 1208.3763.

[107]  Shuangqiang Liu Smoothing effects for the classical solutions to the Landau-Fermi-Dirac equation , 2012 .

[108]  P. T. Nam,et al.  Bogoliubov Spectrum of Interacting Bose Gases , 2012, 1211.2778.

[109]  J. Velázquez,et al.  On the Blow Up and Condensation of Supercritical Solutions of the Nordheim Equation for Bosons , 2012, 1210.1664.

[110]  J. Lee Rate of Convergence Towards Semi-Relativistic Hartree Dynamics , 2012, Annales Henri Poincaré.

[111]  J. Velázquez,et al.  Finite time blow-up and condensation for the bosonic Nordheim equation , 2012, 1206.5410.

[112]  M. Kiessling The Hartree limit of Born's ensemble for the ground state of a bosonic atom or ion , 2012, 1204.2511.

[113]  J. Luhrmann Mean-field quantum dynamics with magnetic fields , 2012, 1202.1065.

[114]  Chao-Jiang Xu,et al.  Smoothing effect of weak solutions for the spatially homogeneous Boltzmann Equation without angular cutoff , 2011, 1104.5648.

[115]  Cl'ement Mouhot,et al.  On measure solutions of the Boltzmann equation, part I: Moment production and stability estimates , 2011, 1102.0373.

[116]  A. Michelangeli,et al.  Dynamical Collapse of Boson Stars , 2010, 1005.3135.

[117]  Xiangdong Zhang,et al.  On the Boltzmann Equation for 2D Bose-Einstein Particles , 2011 .

[118]  R. Seiringer The Excitation Spectrum for Weakly Interacting Bosons , 2010, 1008.5349.

[119]  Federica Pezzotti,et al.  Analytical approach to relaxation dynamics of condensed Bose gases , 2010, 1008.0714.

[120]  J. Lukkarinen,et al.  Weakly nonlinear Schrödinger equation with random initial data , 2009, 0901.3283.

[121]  Gerasimenko Viktor Heisenberg picture of quantum kinetic evolution in mean-field limit , 2011 .

[122]  Viktor Ivanovich Gerasimenko,et al.  Towards Rigorous Derivation of Quantum Kinetic Equations , 2010, 1008.2100.

[123]  L. Arkeryd A Quantum Boltzmann Equation for Haldane Statistics and Hard Forces; the Space-Homogeneous Initial Value Problem , 2010 .

[124]  A. Knowles,et al.  Mean-Field Dynamics: Singular Potentials and Rate of Convergence , 2009, 0907.4313.

[125]  I. Rodnianski,et al.  Boltzmann Limit for a Homogeneous Fermi Gas with Dynamical Hartree-Fock Interactions in a Random Medium , 2009, 0910.2786.

[126]  P. Pickl A Simple Derivation of Mean Field Limits for Quantum Systems , 2009, 0907.4464.

[127]  P. Pickl Derivation of the Time Dependent Gross-Pitaevskii Equation Without Positivity Condition on the Interaction , 2009, 0907.4466.

[128]  M. Grillakis,et al.  Second-Order Corrections to Mean Field Evolution of Weakly Interacting Bosons. I. , 2009, 0904.0158.

[129]  R. Alonso,et al.  Distributional and Classical Solutions to the Cauchy Boltzmann Problem for Soft Potentials with Integrable Angular Cross Section , 2009, 0902.3106.

[130]  J. Lukkarinen,et al.  Not to Normal Order—Notes on the Kinetic Limit for Weakly Interacting Quantum Fluids , 2008, 0807.5072.

[131]  A. Knowles,et al.  On the Mean-Field Limit of Bosons with Coulomb Two-Body Interaction , 2008, 0805.4299.

[132]  Thomas Chen,et al.  On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies , 2008 .

[133]  F. Nier,et al.  Mean Field Limit for Bosons and Infinite Dimensional Phase-Space Analysis , 2008 .

[134]  Xuguang Lu On the Boltzmann equation for Fermi-Dirac particles with very soft potentials: Global existence of weak solutions , 2008 .

[135]  H. Spohn Kinetics of the Bose-Einstein Condensation , 2008, 0809.4551.

[136]  J. Velázquez,et al.  A derivation of a new set of equations at the onset of the Bose–Einstein condensation , 2008 .

[137]  G. Staffilani,et al.  Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics , 2008, 0808.0505.

[138]  Renjun Duan On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in Lξ2(HxN) , 2008 .

[139]  R. Alonso Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data , 2008, 0804.1606.

[140]  Itaru Sasaki,et al.  Boltzmann Limit and Quasifreeness for a Homogenous Fermi Gas in a Weakly Disordered Random Medium , 2007, 0711.0959.

[141]  Benjamin Schlein,et al.  Quantum Fluctuations and Rate of Convergence Towards Mean Field Dynamics , 2007, 0711.3087.

[142]  M. Pulvirenti,et al.  From the N-body Schrödinger Equation to the Quantum Boltzmann Equation: a Term-by-Term Convergence Result in the Weak Coupling Regime , 2007 .

[143]  F. Golse,et al.  Rigorous Derivation of the Cubic NLS in Dimension One , 2007 .

[144]  S. Klainerman,et al.  On the Uniqueness of Solutions to the Gross-Pitaevskii Hierarchy , 2007, math-ph/0701006.

[145]  Horng-Tzer Yau,et al.  Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems , 2005, math-ph/0508010.

[146]  J. Fröhlich,et al.  Mean-Field- and Classical Limit of Many-Body Schrödinger Dynamics for Bosons , 2006, math-ph/0603055.

[147]  Xuguang Lu On the Boltzmann Equation for Fermi–Dirac Particles with Very Soft Potentials: Averaging Compactness of Weak Solutions , 2006 .

[148]  R. Glassey Global Solutions to the Cauchy Problem for the Relativistic Boltzmann Equation with Near–Vacuum Data , 2006 .

[149]  M. Pulvirenti,et al.  Some Considerations on the Derivation of the Nonlinear Quantum Boltzmann Equation II: The Low Density Regime , 2006 .

[150]  H. Spohn The Phonon Boltzmann Equation, Properties and Link to Weakly Anharmonic Lattice Dynamics , 2005, math-ph/0505025.

[151]  H. Yau,et al.  Derivation of the Gross‐Pitaevskii hierarchy for the dynamics of Bose‐Einstein condensate , 2004, math-ph/0410005.

[152]  Xuguang Lu The Boltzmann Equation for Bose–Einstein Particles: Velocity Concentration and Convergence to Equilibrium , 2005 .

[153]  S. Mischler,et al.  Entropy maximisation problem for quantum relativistic particles , 2005 .

[154]  Horng-Tzer Yau,et al.  Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate , 2004, math-ph/0606017.

[155]  M. Lemou,et al.  Equilibrium states for the Landau-Fermi-Dirac equation , 2004 .

[156]  Xuguang Lu,et al.  On Stability and Strong Convergence for the Spatially Homogeneous Boltzmann Equation for Fermi-Dirac Particles , 2003 .

[157]  Yan Guo Classical Solutions to the Boltzmann Equation for Molecules with an Angular Cutoff , 2003 .

[158]  Thomas Chen Localization Lengths and Boltzmann Limit for the Anderson Model at Small Disorders in Dimension 3 , 2003, math-ph/0305051.

[159]  Radjesvarane Alexandre,et al.  On the Boltzmann equation for long‐range interactions , 2002 .

[160]  Y. Pomeau,et al.  Nonlinear aspects of the theory of Bose-Einstein condensates , 2001 .

[161]  E. Lieb,et al.  A Rigorous Derivation¶of the Gross–Pitaevskii Energy Functional¶for a Two-dimensional Bose Gas , 2000, cond-mat/0005026.

[162]  Cédric Villani,et al.  On a New Class of Weak Solutions to the Spatially Homogeneous Boltzmann and Landau Equations , 1998 .

[163]  Israel Michael Sigal,et al.  Renormalization Group Analysis of Spectral Problems in Quantum Field Theory , 1998 .

[164]  C. Cercignani,et al.  Many-Particle Dynamics And Kinetic Equations , 1997 .

[165]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[166]  B. Wennberg On moments and uniqueness for solutions to the space homogeneous Boltzmann equation , 1994 .

[167]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[168]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[169]  K. Uchiyama Derivation of the Boltzmann equation from particle dynamics , 1988 .

[170]  G. Toscani,et al.  On the Cauchy problem for the nonlinear Boltzmann equation global existence uniqueness and asymptotic stability , 1985 .

[171]  H. Neunzert,et al.  On the Vlasov hierarchy , 1981 .

[172]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[173]  C. Cercignani On the Boltzmann equation for rigid spheres , 1972 .