Effect of source to the substrate distance on thermoelectric properties of Copper Nitride thin films grown by thermal evaporation method

[1]  E. Szłyk,et al.  From binary to multinary copper based nitrides – Unlocking the potential of new applications , 2021, Coordination Chemistry Reviews.

[2]  C. Perkins,et al.  Influence of Protection Layers on Thermal Stability of Nitride Thin Films , 2021, physica status solidi (RRL) – Rapid Research Letters.

[3]  Jinglin Luo,et al.  Hierarchically Assembling Cobalt/Nickel Carbonate Hydroxide on Copper Nitride Nanowires for Highly Efficient Water Splitting , 2021, ECS Meeting Abstracts.

[4]  N. Amin,et al.  Modulation of thermoelectric properties of thermally evaporated copper nitride thin films by optimizing the growth parameters , 2021 .

[5]  Z. Ren,et al.  N-type Mg3Sb2-Bi with improved thermal stability for thermoelectric power generation , 2020 .

[6]  K. S. Siddiqi,et al.  Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review , 2020, Biomaterials Research.

[7]  Lidong Chen,et al.  Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices , 2020, Nature Communications.

[8]  Chao Wang,et al.  Mechanical reliability, thermal stability and thermoelectric performance of the transition-metal nitride CrN , 2020 .

[9]  N. Amin,et al.  Optimizing the electrical transport properties of ZnSnO thin films by post growth annealing in air , 2020 .

[10]  Christopher J. Smith,et al.  Climate and air-quality benefits of a realistic phase-out of fossil fuels , 2019, Nature.

[11]  Z. Ren,et al.  Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials , 2019, Journal of Power Sources.

[12]  K. Kuroki,et al.  Comparative First-Principles Study of Antiperovskite Oxides and Nitrides as Thermoelectric Material: Multiple Dirac Cones, Low-Dimensional Band Dispersion, and High Valley Degeneracy , 2019, Physical Review Applied.

[13]  V. Ediger An integrated review and analysis of multi-energy transition from fossil fuels to renewables , 2019, Energy Procedia.

[14]  A. Jiang,et al.  Preparation, structure, properties, and application of copper nitride (Cu 3 N) thin films: A review , 2018, Journal of Materials Science & Technology.

[15]  C. R. Raj,et al.  Copper Nitride Nanostructure for the Electrocatalytic Reduction of Oxygen: Kinetics and Reaction Pathway , 2018, The Journal of Physical Chemistry C.

[16]  K. Mahmood,et al.  Influence of Annealing Treatment on Structural, Optical, Electric, and Thermoelectric Properties of MBE-Grown ZnO , 2018, Journal of Experimental and Theoretical Physics.

[17]  Ji Wang,et al.  Thermodynamics analysis of thermoelectric materials: Influence of cracking on efficiency of thermoelectric conversion , 2017 .

[18]  N. Amin,et al.  Investigation of the optimal annealing temperature for the enhanced thermoelectric properties of MOCVD-grown ZnO films , 2017 .

[19]  Boris Kozinsky,et al.  Enhanced thermoelectric properties of n-type NbCoSn half-Heusler by improving phase purity , 2016 .

[20]  Lidong Chen,et al.  Cu-based thermoelectric materials , 2016 .

[21]  C. Felser,et al.  Long-Term Stability of (Ti/Zr/Hf)CoSb1−xSnx Thermoelectric p-Type Half-Heusler Compounds Upon Thermal Cycling , 2015 .

[22]  G. Silvestre,et al.  Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants , 2015 .

[23]  J. Silvestre-Albero,et al.  Mesoporous materials for clean energy technologies. , 2014, Chemical Society reviews.

[24]  David S. Ginley,et al.  Thin film synthesis and properties of copper nitride, a metastable semiconductor , 2014 .

[25]  Jinwang Li,et al.  Synthesis of a Multinary Nitride, Eu-Doped CaAlSiN3, from Alloy at Low Temperatures , 2008 .

[26]  G. J. Snyder,et al.  Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation , 2006 .

[27]  T. Akiyama,et al.  Feasibility Study for Recovering Waste Heat in the Steelmaking Industry Using a Chemical Recuperator , 2004 .

[28]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[29]  J. A. Díaz,et al.  Copper nitride films produced by reactive pulsed laser deposition , 2003 .

[30]  J. Pierson Structure and properties of copper nitride films formed by reactive magnetron sputtering , 2002 .

[31]  L. Hultman Thermal stability of nitride thin films , 2000 .

[32]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[33]  R. Hawley,et al.  Clean Energy for the 21st Century , 1997 .

[34]  Q. Guo,et al.  Thermal stability of indium nitride single crystal films , 1993 .

[35]  Amulya K. N. Reddy,et al.  Energy for the Developing World , 1990 .

[36]  G. Löf Solar Energy: An Infinite Source of Clean Energy , 1973 .

[37]  K. Wiik,et al.  Long term stability testing of oxide unicouple thermoelectric modules , 2019, Materials Today: Proceedings.

[38]  Mostafa Rahimnejad,et al.  SEDIMENT AS NEW SOURCE OF CLEAN ENERGY FOR BIOELECTRICITY PRODUCTION , 2015 .

[39]  Bekir Sami Yilbas,et al.  The thermoelement as thermoelectric power generator: Effect of leg geometry on the efficiency and power generation , 2013 .

[40]  J. Z. Jiang,et al.  Hardness and thermal stability of cubic silicon nitride , 2001 .