The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance

Abstract The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite was launched in April 2006 to provide global vertically resolved measurements of clouds and aerosols. Correct discrimination between clouds and aerosols observed by the lidar aboard the CALIPSO satellite is critical for accurate retrievals of cloud and aerosol optical properties and the correct interpretation of measurements. This paper reviews the theoretical basis of the CALIPSO lidar cloud and aerosol discrimination (CAD) algorithm, and describes the enhancements made to the version 2 algorithm that is used in the current data release (release 2). The paper also presents a preliminary assessment of the CAD performance based on one full day (12 August 2006) of expert manual classification and on one full month (July 2006) of the CALIOP 5-km cloud and aerosol layer products. Overall, the CAD algorithm works well in most cases. The 1-day manual verification suggests that the success rate is in the neighborh...

[1]  A. Ansmann,et al.  Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .

[2]  David M. Winker,et al.  Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products , 2004, SPIE Remote Sensing.

[3]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[4]  Zhaoyan Liu,et al.  Adjoint inversion modeling of Asian dust emission using lidar observations , 2008 .

[5]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[6]  D. Winker,et al.  Initial performance assessment of CALIOP , 2007 .

[7]  David M. Winker,et al.  An overview of LITE: NASA's Lidar In-space Technology Experiment , 1996, Proc. IEEE.

[8]  C. M. R. Platt Lidar Backscatter from Horizontal Ice Crystal Plates , 1978 .

[9]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[10]  J. M. Livingston,et al.  Aerosol spectral optical depths: Jet fuel and forest fire smokes , 1990 .

[11]  M. McCormick,et al.  Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements , 2005 .

[12]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[13]  Mark A. Vaughan,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description , 2009 .

[14]  Mark A. Vaughan,et al.  Backscatter-to-Extinction Ratios in the Top Layers of Tropical Mesoscale Convective Systems and in Isolated Cirrus from LITE Observations. , 1999 .

[15]  M. Pitts,et al.  Characterization of Polar Stratospheric Clouds with spaceborne lidar: CALIPSO and the 2006 Antarctic season , 2007 .

[16]  S. Nicholson,et al.  The diurnal and seasonal cycles of wind-borne dust over Africa North of the Equator , 1997 .

[17]  David M. Winker,et al.  Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data , 2004 .

[18]  Zhaoyan Liu,et al.  Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations , 2008 .

[19]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[20]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[21]  D. Winker,et al.  CALIPSO Lidar Description and Performance Assessment , 2009 .

[22]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[23]  Ronald G. Pinnick,et al.  Backscatter and extinction in water clouds , 1981 .

[24]  A. Adriani,et al.  Comparison of various linear depolarization parameters measured by lidar. , 1999, Applied optics.

[25]  K. Stamnes,et al.  CALIPSO/CALIOP Cloud Phase Discrimination Algorithm , 2009 .

[26]  David M. Winker,et al.  CALIPSO Lidar Calibration Algorithms. Part I: Nighttime 532-nm Parallel Channel and 532-nm Perpendicular Channel , 2009 .

[27]  David M. Winker,et al.  CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long‐range transport , 2008 .

[28]  S. Ackerman,et al.  Surface weather observations of atmospheric dust over the southwest summer monsoon region , 1989 .

[29]  R. Charlson,et al.  On the climate forcing consequences of the albedo continuum between cloudy and clear air , 2007 .

[30]  O. Dubovik,et al.  Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations , 2005 .

[31]  David M. Winker,et al.  Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements , 2009 .

[32]  Simone Tanelli,et al.  CloudSat mission: Performance and early science after the first year of operation , 2008 .

[33]  Zhaoyan Liu,et al.  Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. , 2002, Applied optics.