High-brightness AlGaInP light emitting diodes

First commercially introduced in 1990, AlGaInP light emitting diodes (LEDs) currently are the highest (luminous) efficiency visible solid-state emitters produced to date in the red through yellow spectral regime. The attainment of this high-efficiency performance is a result of the development of advanced metalorganic chemical vapor deposition crystal growth techniques, which have facilitated the high-quality growth of this quaternary alloy as well as the implementation of complex device designs. Furthermore, the highest efficiency family of AlGaInP devices (based upon a transparent-substrate platform and commercially introduced in 1994) have been realized as result of the development and implementation of direct compound semiconductor wafer bonding technology. As a result, the luminous efficiency of AlGaInP LEDs exceeds or rivals that of unfiltered incandescent lamps and other conventional lighting sources. Further improvements in these techniques (and the realization of efficient, high-power LEDs) are expected to make AlGaInP LEDs even more competitive with conventional lamp technology, thus enhancing the position of LED's in many applications as a preferred lighting source.

[1]  N. Holonyak,et al.  Environmental degradation of AlxGa1−xAs‐GaAs quantum‐well heterostructures , 1990 .

[2]  A. Y. Cho,et al.  Film Deposition by Molecular-Beam Techniques , 1971 .

[3]  F. A. Kish,et al.  Highly reliable and efficient semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes , 1996 .

[4]  S. J. Rosner,et al.  Electrical conduction through compound semiconductor wafer bonded interfaces , 1997 .

[5]  Miyoko O. Watanabe,et al.  Se‐related deep levels in InGaAlP , 1986 .

[6]  H. Saunders,et al.  Fundamentals of Acoustics (3rd Ed.) , 1983 .

[7]  G. Stillman,et al.  An overview of early studies on persistent photoconductivity and other properties of deep levels in GaAsP: The effect of deep levels on light emitting devices , 1991 .

[8]  J. Bardeen,et al.  The transistor, a semi-conductor triode , 1948 .

[9]  C. P. Kuo,et al.  Twofold efficiency improvement in high performance AlGaInP light‐emitting diodes in the 555–620 nm spectral region using a thick GaP window layer , 1992 .

[10]  P. Dapkus Metalorganic Chemical Vapor Deposition , 1982 .

[11]  J. Nishizawa,et al.  Electrical characterization of Si-donor-related shallow and deep states in InGaAlP alloys grown by metalorganic chemical vapor deposition , 1991 .

[12]  M. A. Koza,et al.  Bonding by atomic rearrangement of InP/InGaAsP 1.5 μm wavelength lasers on GaAs substrates , 1991 .

[13]  G. B. Stringfellow,et al.  The effect of oxygen incorporation in semi‐insulating (AlxGa1−x)yIn1−yP , 1992 .

[14]  Takashi Mukai,et al.  Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes , 1995 .

[15]  David Z. Ting,et al.  Monte Carlo simulation of light-emitting diode light-extraction characteristics , 1995 .

[16]  Yukie Nishikawa,et al.  Photoluminescence studies on InGaAlP layers grown by low-pressure metalorganic chemical vapor deposition , 1991 .

[17]  D. Clarke,et al.  SIMULATION OF ELECTRON TRANSPORT ACROSS CHARGED GRAIN BOUNDARIES , 1996 .

[18]  M. Craford LEDs challenge the incandescents , 1992, IEEE Circuits and Devices Magazine.

[19]  Yoh Ogawa,et al.  Electrical characteristics of directly-bonded GaAs and InP , 1993 .

[20]  U. Koren,et al.  High quantum efficiency and narrow absorption bandwidth of the wafer-fused resonant In/sub 0.53/Ga/sub 0.47/As photodetectors , 1994, IEEE Photonics Technology Letters.

[21]  N. Holonyak,et al.  Stability of AlAs in AlxGa1-xAs-AlAs-GaAs quantum well heterostructures , 1990 .

[22]  D. E. Mull,et al.  Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration , 1990 .

[23]  S. Lester,et al.  High‐efficiency InGaP light‐emitting diodes on GaP substrates , 1991 .

[24]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[25]  Fernando Ponce,et al.  High dislocation densities in high efficiency GaN‐based light‐emitting diodes , 1995 .

[26]  M. Kondô,et al.  Analysis of recombination centers in (AlxGa1−x)0.5In0.5P quaternary alloys , 1991 .

[27]  R. Bhat,et al.  High‐performance InGaAs photodetectors on Si and GaAs substrates , 1995 .

[28]  M. George Craford,et al.  Light-Emitting Diode Displays , 1985 .

[29]  Harold M. Manasevit,et al.  Single-crystal gallium arsenide on insulating substrates , 1968 .

[30]  M. Ishikawa,et al.  High-efficiency InGaAlP/GaAs visible light-emitting diodes , 1991 .

[31]  P. Dapkus,et al.  Preparation and properties of Ga 1-x Al x As-GaAs heterostructure lasers grown by metalorganic chemical vapor deposition , 1979 .

[32]  K. Uomi,et al.  Anti-phase direct bonding and its application to the fabrication of InP-based 1.55 μm wavelength lasers on GaAs substrates , 1995 .

[33]  H. M. Manasevit The Use of Metal‐Organics in the Preparation of Semiconductor Materials: III . Studies of Epitaxial III ‐ V Aluminum Compound Formation Using Trimethylaluminum , 1971 .

[34]  C. P. Kuo,et al.  Very high‐efficiency semiconductor wafer‐bonded transparent‐substrate (AlxGa1−x)0.5In0.5P/GaP light‐emitting diodes , 1994 .

[35]  F. A. Kish,et al.  Low‐resistance Ohmic conduction across compound semiconductor wafer‐bonded interfaces , 1995 .

[36]  Kazuhiko Itaya,et al.  InGaAlP visible light laser diodes and light-emitting diodes , 1994 .

[37]  Rajeev J Ram,et al.  Low threshold, wafer fused long wavelength vertical cavity lasers , 1994 .

[38]  Masaki Okajima,et al.  Reduction of residual oxygen incorporation and deep levels by substrate misorientation in InGaAlP alloys , 1993 .

[39]  F. A. Kish,et al.  Wafer bonding of 50‐mm diameter GaP to AlGaInP‐GaP light‐emitting diode wafers , 1996 .

[40]  M. Ludowise Metalorganic chemical vapor deposition of III‐V semiconductors , 1985 .

[41]  Robert L. Byer,et al.  Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser , 1993 .

[42]  F. Kish,et al.  High luminous flux semiconductor wafer-bonded AlGaInP/GaP large-area emitters , 1994 .

[43]  N. Holonyak,et al.  COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS , 1962 .

[44]  H. M. Manasevit,et al.  The Use of Metal‐Organics in the Preparation of Semiconductor Materials II . II – VI Compounds , 1971 .

[45]  Harold M. Manasevit,et al.  Recollections and reflections of MO-CVD , 1981 .

[46]  Makoto Kondo,et al.  Origin of nonradiative recombination centers in AlGaInP grown by metalorganic vapor phase epitaxy , 1994 .

[47]  K. Wakita,et al.  InGaP/InGaAlP double-heterostructure and multiquantum-well laser diodes grown by molecular-beam epitaxy , 1987 .

[48]  E. Yablonovitch,et al.  Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates , 1990 .

[49]  Kazuhiko Itaya,et al.  High-brightness InGaAlP green light-emitting diodes , 1992 .

[50]  P. D. Dapkus,et al.  Room‐temperature operation of Ga(1−x)AlxAs/GaAs double‐heterostructure lasers grown by metalorganic chemical vapor deposition , 1977 .

[51]  R. Fletcher,et al.  High performance AlGaInP visible light‐emitting diodes , 1990 .

[52]  C. P. Kuo,et al.  Chapter 4 OMVPE Growth of AlGalnP for High-Efficiency Visible Light-Emitting Diodes , 1997 .