Enhancing triboelectric nanogenerators power conversion efficiency with few-layers graphene flexible electrodes

[1]  George K. Kaufman,et al.  Tribocharging and the Triboelectric Series , 2019, Encyclopedia of Inorganic and Bioinorganic Chemistry.

[2]  Ali Radhi,et al.  Integrated Triboelectric Nanogenerators in the Era of the Internet of Things , 2019, Advanced science.

[3]  R. Dharmasena,et al.  Towards optimized triboelectric nanogenerators , 2019, Nano Energy.

[4]  R. Carpick,et al.  The strong effect on MEMS switch reliability of film deposition conditions and electrode geometry , 2019, Microelectronics Reliability.

[5]  Lingjie Xie,et al.  A liquid PEDOT:PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source. , 2019, Nanoscale.

[6]  Weitong Wu,et al.  Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure , 2019, Nano Energy.

[7]  Zhong Lin Wang,et al.  Quantifying the triboelectric series , 2019, Nature Communications.

[8]  Zhuo Kang,et al.  Recent Advances in Triboelectric Nanogenerator‐Based Health Monitoring , 2019, Advanced Functional Materials.

[9]  J. Gooding,et al.  Electrochemistry on Tribocharged Polymers Is Governed by the Stability of Surface Charges Rather than Charging Magnitude. , 2019, Journal of the American Chemical Society.

[10]  Qiongfeng Shi,et al.  More than energy harvesting – Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems , 2019, Nano Energy.

[11]  Zhuo Liu,et al.  Wearable and Implantable Triboelectric Nanogenerators , 2019, Advanced Functional Materials.

[12]  Youfan Hu,et al.  Progress in textile-based triboelectric nanogenerators for smart fabrics , 2019, Nano Energy.

[13]  Minbaek Lee,et al.  Microwave-welded single-walled carbon nanotubes as suitable electrodes for triboelectric energy harvesting from biomaterials and bioproducts , 2019, Nano Energy.

[14]  Wook Kim,et al.  Mechanical energy conversion systems for triboelectric nanogenerators: Kinematic and vibrational designs , 2019, Nano Energy.

[15]  Hengyu Guo,et al.  Triboelectric Nanogenerator: A Foundation of the Energy for the New Era , 2018, Advanced Energy Materials.

[16]  S. Lee,et al.  Transparent and flexible high power triboelectric nanogenerator with metallic nanowire-embedded tribonegative conducting polymer , 2018, Nano Energy.

[17]  Geon Hwee Kim,et al.  Recent Progress on Microelectrodes in Neural Interfaces , 2018, Materials.

[18]  S. R. Silva,et al.  Nature of Power Generation and Output Optimization Criteria for Triboelectric Nanogenerators , 2018, Advanced Energy Materials.

[19]  Sang‐Woo Kim,et al.  Sustainable powering triboelectric nanogenerators: Approaches and the path towards efficient use , 2018, Nano Energy.

[20]  Kieran K. Walsh,et al.  A New Facile Route to Flexible and Semi‐Transparent Electrodes Based on Water Exfoliated Graphene and their Single‐Electrode Triboelectric Nanogenerator , 2018, Advanced materials.

[21]  D. Hui,et al.  A Review of Conductive Metal Nanomaterials as Conductive, Transparent, and Flexible Coatings, Thin Films, and Conductive Fillers: Different Deposition Methods and Applications , 2018, Coatings.

[22]  C. Chen,et al.  A Wrinkled PEDOT:PSS Film Based Stretchable and Transparent Triboelectric Nanogenerator for Wearable Energy Harvesters and Active Motion Sensors , 2018, Advanced Functional Materials.

[23]  Sang‐Woo Kim,et al.  Understanding and modeling of triboelectric-electret nanogenerator , 2018 .

[24]  Z. Dang,et al.  High-yield production of 2D crystals by wet-jet milling , 2018, 1804.10688.

[25]  M. Rincón,et al.  Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical-Chiral Sensors. , 2018, Chemical reviews.

[26]  Zhong Lin Wang,et al.  On the Electron‐Transfer Mechanism in the Contact‐Electrification Effect , 2018, Advanced materials.

[27]  Zhong Lin Wang,et al.  Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator. , 2018, ACS nano.

[28]  Fei Wang,et al.  Electret-material enhanced triboelectric energy harvesting from air flow for self-powered wireless temperature sensor network , 2018 .

[29]  Wook Kim,et al.  Layer-by-layer assembled graphene multilayers on multidimensional surfaces for highly durable, scalable, and wearable triboelectric nanogenerators , 2018 .

[30]  Yang Wang,et al.  Triboelectric nanogenerators as flexible power sources , 2017, npj Flexible Electronics.

[31]  Yantao Chen,et al.  Size effect on the output of a miniaturized triboelectric nanogenerator based on superimposed electrode layers , 2017 .

[32]  Tao Jiang,et al.  Toward the blue energy dream by triboelectric nanogenerator networks , 2017 .

[33]  Xiaogan Li,et al.  Multifunctional TENG for Blue Energy Scavenging and Self‐Powered Wind‐Speed Sensor , 2017 .

[34]  Nan Zhang,et al.  Crumpled Graphene Triboelectric Nanogenerators: Smaller Devices with Higher Output Performance , 2017 .

[35]  Zhou Li,et al.  Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems , 2017, Advanced science.

[36]  Zhong Lin Wang On Maxwell's displacement current for energy and sensors: the origin of nanogenerators , 2017 .

[37]  I. Antonova 2D printing technologies using graphene-based materials , 2017 .

[38]  Duncan N. Johnstone,et al.  Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks , 2016, ACS nano.

[39]  N. Koch,et al.  Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution , 2016, Scientific Reports.

[40]  F. Liu,et al.  Strain engineering of graphene: a review. , 2016, Nanoscale.

[41]  Norbert Koch,et al.  Energy-level alignment at organic heterointerfaces , 2015, Science Advances.

[42]  G. Horowitz,et al.  Injection barrier at metal/organic semiconductor junctions with a Gaussian density-of-states , 2015 .

[43]  Haiyan Sun,et al.  Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach , 2015 .

[44]  Zhong Lin Wang,et al.  Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors , 2015 .

[45]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[46]  Fernando Galembeck,et al.  Friction, tribochemistry and triboelectricity: recent progress and perspectives , 2014 .

[47]  Long Lin,et al.  Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. , 2014, ACS nano.

[48]  W. E. Ford,et al.  Organic dipole layers for ultralow work function electrodes. , 2014, ACS nano.

[49]  Jaehwan Kim,et al.  Electrode effects of a cellulose-based electro-active paper energy harvester , 2014 .

[50]  Tae Yun Kim,et al.  Transparent Flexible Graphene Triboelectric Nanogenerators , 2014, Advanced materials.

[51]  E. D. L. Llave,et al.  Organization of Alkane Amines on a Gold Surface: Structure, Surface Dipole, and Electron Transfer , 2014 .

[52]  Zhong Lin Wang,et al.  Theoretical study of contact-mode triboelectric nanogenerators as an effective power source , 2013 .

[53]  Zhong Lin Wang,et al.  Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. , 2013, ACS nano.

[54]  Zhong Lin Wang,et al.  Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. , 2013, Nano letters.

[55]  A. Ferrari,et al.  Production and processing of graphene and 2d crystals , 2012 .

[56]  Long Lin,et al.  Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. , 2012, Nano letters.

[57]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[58]  Zhong Lin Wang,et al.  Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. , 2012, Nano letters.

[59]  A. Ferrari,et al.  Inkjet-printed graphene electronics. , 2011, ACS nano.

[60]  B. Grzybowski,et al.  The Mosaic of Surface Charge in Contact Electrification , 2011, Science.

[61]  C. Guo,et al.  Graphene Based Materials: Enhancing Solar Energy Harvesting , 2011 .

[62]  V. Svorcik,et al.  Properties of gold nanostructures sputtered on glass , 2011, Nanoscale research letters.

[63]  M. Park,et al.  Electrical Conductivity of Chemically Reduced Graphene Powders under Compression , 2010 .

[64]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[65]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[66]  Jae-Young Choi,et al.  Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes , 2010, Advanced materials.

[67]  R. Kaner,et al.  Graphene, a promising transparent conductor , 2010 .

[68]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[69]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[70]  L. McCarty,et al.  Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. , 2008, Angewandte Chemie.

[71]  J. Israelachvili,et al.  Triboelectrification between smooth metal surfaces coated with self-assembled monolayers (SAMs). , 2006, The journal of physical chemistry. B.

[72]  Thierry Lebey,et al.  Impact of the surface roughness on the electrical capacitance , 2006, Microelectron. J..

[73]  D. Thierry,et al.  Scanning Kelvin probe study of metal/polymer interfaces , 2004 .

[74]  Gert Rietveld,et al.  DC conductivity measurements in the Van der Pauw geometry , 2002, Conference Digest Conference on Precision Electromagnetic Measurements.

[75]  D. K. Davies,et al.  Charge generation on dielectric surfaces , 1969 .

[76]  D. K. Davies Trapped Charges on Dielectrics , 1964, Nature.

[77]  Zhuo Kang,et al.  Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics , 2019, Nano Energy.

[78]  Jian Zhu,et al.  Enhanced Conductivity, Adhesion, and Environmental Stability of Printed Graphene Inks with Nitrocellulose , 2017 .

[79]  Edward H. Sargent,et al.  Solution-processed semiconductors for next-generation photodetectors , 2017 .

[80]  F. Krebs,et al.  Roll‐to‐Roll fabrication of large area functional organic materials , 2013 .

[81]  Andrew C. Kummel,et al.  Kelvin probe force microscopy and its application , 2011 .