Blow-up in nonlinear heat equations

We study the blow-up of solutions of nonlinear heat equations in dimension 1. We show that for an open set of even initial data which are characterized roughly by having maxima at the origin, the solutions blow up in finite time and at a single point. We find the universal blow-up profile and remainder estimates. Our results extend previous results in several directions and our techniques differ from the techniques previously used for this problem. In particular, they do not rely on maximum principle.

[1]  S. Howison,et al.  Applied Partial Differential Equations , 1999 .

[2]  G. Parisi Brownian motion , 2005, Nature.

[3]  Frank Merle,et al.  Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation , 2002 .

[4]  F. Merle,et al.  Modulation Theory for the Blowup of Vector-Valued Nonlinear Heat Equations , 1995 .

[5]  F. Merle,et al.  Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view , 2000 .

[6]  Collapsing bacterial cylinders. , 1999, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  S. Zienau Quantum Physics , 1969, Nature.

[8]  Howard A. Levine,et al.  The Role of Critical Exponents in Blowup Theorems , 1990, SIAM Rev..

[9]  Yoshikazu Giga,et al.  Nondegeneracy of blowup for semilinear heat equations , 1989 .

[10]  Stathis Filippas,et al.  Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Hatem Zaag,et al.  Stability of the blow-up profile for equations of the type $u_t=\Delta u+|u|^{p-1}u$ , 1997 .

[12]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[13]  Basilis Gidas,et al.  A priori bounds for positive solutions of nonlinear elliptic equations , 1981 .

[14]  Robert V. Kohn,et al.  Refined asymptotics for the blowup of ut –Δu = up , 1992 .

[15]  S. Filippas,et al.  On the blowup of multidimensional semilinear heat equations , 1993 .

[16]  G. Perelman On the Formation of Singularities in Solutions of the Critical Nonlinear Schrödinger Equation , 2001 .

[17]  F. Merle,et al.  Reconnection of vortex with the boundary and finite time quenching , 1997 .

[18]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[19]  Michel Chipot,et al.  Elements of Nonlinear Analysis , 2000 .

[20]  Fred B. Weissler,et al.  An L∞ blow‐up estimate for a nonlinear heat equation , 1985 .

[21]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[22]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[23]  Pierre Raphaël,et al.  The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation , 2005 .

[24]  J. Velázquez Higher dimensional blow up for semilinear parabolic equations , 1992 .

[25]  Fred B. Weissler,et al.  Single point blow-up for a semilinear initial value problem , 1984 .

[26]  B. Simon Functional integration and quantum physics , 1979 .

[27]  F. Merle,et al.  Compactness and single-point blowup of positive solutions on bounded domains , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[28]  A. Kartsatos,et al.  On a Liouville-type theorem and the Fujita blow-up phenomenon , 2003 .

[29]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[30]  M. A. Herrero,et al.  Generic behaviour of one-dimensional blow up patterns , 1992 .

[31]  John M. Ball,et al.  REMARKS ON BLOW-UP AND NONEXISTENCE THEOREMS FOR NONLINEAR EVOLUTION EQUATIONS , 1977 .

[32]  Leo P. Kadanoff,et al.  Diffusion, attraction and collapse , 1999 .

[33]  F. Merle,et al.  Refined Uniform Estimates at Blow-Up and Applications for Nonlinear Heat Equations , 1998 .

[35]  P. Quittner Blow-up for semilinear parabolic equations with a gradient term , 1991 .

[36]  F. Merle Solution of a nonlinear heat equation with arbitrarily given blow-up points , 1992 .

[37]  Y. Giga,et al.  Blow up rate for semilinear heat equation with subcritical nonlinearity , 2002 .

[38]  Miguel A. Herrero,et al.  Blow-up behaviour of one-dimensional semilinear parabolic equations , 1993 .

[39]  C. Sulem,et al.  On asymptotic stability of solitary waves for nonlinear Schrödinger equations , 2003 .

[40]  F. Merle,et al.  A Liouville theorem for vector-valued nonlinear heat equations and applications , 2000 .

[41]  Yoshikazu Giga,et al.  Characterizing Blow-up Using Similarity Variables , 1985 .

[42]  Y. Giga,et al.  On blow‐up rate for sign‐changing solutions in a convex domain , 2003 .

[43]  Y. Giga,et al.  Asymptotically self‐similar blow‐up of semilinear heat equations , 1985 .

[44]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[45]  Alan Bain Stochastic Calculus , 2007 .

[46]  Panagiotis E. Souganidis,et al.  Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature , 1993 .

[47]  Howard A. Levine,et al.  Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=−Au+ℱ(u) , 1973 .

[48]  Hatem Zaag,et al.  Optimal estimates for blowup rate and behavior for nonlinear heat equations , 1998 .

[49]  Frank Merle,et al.  On universality of blow-up profile for L2 critical nonlinear Schrödinger equation , 2004 .

[50]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[51]  H. Fujita On the blowing up of solutions fo the Cauchy problem for u_t=Δu+u^ , 1966 .

[52]  F. Merle,et al.  On Nonexistence of type II blowup for a supercritical nonlinear heat equation , 2004 .

[53]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[54]  Andrea L. Bertozzi,et al.  Axisymmetric Surface Diffusion: Dynamics and Stability of Self-Similar Pinchoff , 1998 .

[55]  J. Bricmont,et al.  Universality in blow-up for nonlinear heat equations , 1993 .