An Introduction to Computational Origami

We discuss the basic fold rules of origami. With a small number of fold rules, we can construct geometric shapes that we see at geometry classes of schools. We construct those shapes usually by a straightedge and a compass, so-called a Euclidian tool of construction. We explain the set of the basic fold rules and show, by examples, that it is as powerful as a straightedge and a compass. Furthermore, we show that the set of basic fold rules enables us to construct the shapes by folding by hand. The set of the basic fold rules is the main ingredient of more powerful Huzita-Justin’s fold rules that we discuss in Chapter 3.

[1]  S. Tabachnikov Polynomials as Polygons , 2017 .

[2]  Tetsuo Ida,et al.  Formalizing polygonal knot origami , 2015, J. Symb. Comput..

[3]  E. M. Langley,et al.  Geometric Exercises in Paper Folding , 1893 .

[4]  R. Fitzpatrick,et al.  Euclid's Elements of Geometry , 1901, Nature.

[5]  Bruno Buchberger,et al.  Computational Origami Construction of a Regular Heptagon with Automated Proof of Its Correctness , 2004, Automated Deduction in Geometry.

[6]  Tetsuo Ida,et al.  Computational Construction of a Maximum Equilateral Triangle Inscribed in an Origami , 2006, ICMS.

[7]  Bruno Buchberger,et al.  Proving and Solving in Computational Origami , 2004 .

[8]  Thomas C. Hull Solving Cubics With Creases: The Work of Beloch and Lill , 2011, Am. Math. Mon..

[9]  S. Chou Mechanical Geometry Theorem Proving , 1987 .

[10]  Shigeki Yokoi,et al.  An Origami Playing Simulator in the Virtual Space , 1996, Comput. Animat. Virtual Worlds.

[11]  Francis Borceux,et al.  Euclid's Elements , 2014, Kybernetika.

[12]  Cezary Kaliszyk,et al.  Algebraic Analysis of Huzita's Origami Operations and Their Extensions , 2012, Automated Deduction in Geometry.

[13]  Tetsuo Ida,et al.  Computational Origami of a Morley's Triangle , 2005, MKM.

[14]  David Zeb Rocklin,et al.  The Science of Origami , 2003, Science.

[15]  Roger C. Alperin A Mathematical Theory of Origami Constructions and Numbers , 2000 .

[16]  Tetsuo Ida,et al.  Proof Documents for Automated Origami Theorem Proving , 2010, Automated Deduction in Geometry.

[17]  Enno Ohlebusch Abstract Reduction Systems , 2002 .

[18]  Robert J. Lang,et al.  One-, Two-, and Multi-Fold Origami Axioms , 2006 .

[19]  Deepak Kapur,et al.  Using Gröbner Bases to Reason About Geometry Problems , 1986, J. Symb. Comput..

[20]  B. Kutzler,et al.  On the Application of Buchberger's Algorithm to Automated Geometry Theorem Proving , 1986, J. Symb. Comput..

[21]  P. Lockhart,et al.  Introduction to Geometry , 1940, The Mathematical Gazette.

[22]  J. Davenport Editor , 1960 .

[23]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[24]  Sidney A. Morris,et al.  Abstract Algebra and Famous Impossibilities , 1993 .

[25]  Kyoyong Song Mathematics of origami , 2011 .

[26]  Bruno Buchberger,et al.  Introduction to Groebner Bases , 1997 .

[27]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[28]  J. Sefcik ad , 2020, Innovation in Aging.

[29]  J. L. Rabinowitsch Zum Hilbertschen Nullstellensatz , 1930 .

[30]  Tetsuo Ida,et al.  Logical and algebraic view of Huzita's origami axioms with applications to computational origami , 2007, SAC '07.

[31]  Tetsuo Ida,et al.  Origami fold as algebraic graph rewriting , 2009, SAC '09.

[32]  Bruno Buchberger,et al.  Proving and Constraint Solving in Computational Origami , 2004, AISC.

[33]  Ronald Arbuthnott Knox,et al.  On English translation , 1973 .

[34]  David Wells,et al.  The Penguin Dictionary of Curious and Interesting Geometry , 1992 .

[35]  Tetsuo Ida,et al.  Morley's theorem revisited: Origami construction and automated proof , 2011, J. Symb. Comput..

[36]  David Corwin Galois Theory , 2009 .