d-VMP: Distributed Variational Message Passing
暂无分享,去创建一个
Andrés R. Masegosa | Anders L. Madsen | Ana M. Martínez | Darío Ramos-López | Antonio Salmerón | Thomas D. Nielsen | Helge Langseth
[1] Yoram Singer,et al. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..
[2] Yee Whye Teh,et al. Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.
[3] H. Robbins. A Stochastic Approximation Method , 1951 .
[4] Jonathan P. How,et al. Approximate Decentralized Bayesian Inference , 2014, UAI.
[5] Mark W. Schmidt,et al. Convergence of Proximal-Gradient Stochastic Variational Inference under Non-Decreasing Step-Size Sequence , 2015, ArXiv.
[6] James R. Foulds,et al. Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation , 2013, KDD.
[7] Andrés R. Masegosa,et al. Modeling Concept Drift: A Probabilistic Graphical Model Based Approach , 2015, IDA.
[8] Matthew J. Beal. Variational algorithms for approximate Bayesian inference , 2003 .
[9] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[10] David M. Blei,et al. Smoothed Gradients for Stochastic Variational Inference , 2014, NIPS.
[11] Andre Wibisono,et al. Streaming Variational Bayes , 2013, NIPS.
[12] Charles M. Bishop,et al. Variational Message Passing , 2005, J. Mach. Learn. Res..
[13] Andrés R. Masegosa,et al. Dynamic Bayesian modeling for risk prediction in credit operations , 2015, SCAI.
[14] Z.-Q. Luo,et al. Error bounds and convergence analysis of feasible descent methods: a general approach , 1993, Ann. Oper. Res..
[15] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[16] Carlos S. Kubrusly,et al. Stochastic approximation algorithms and applications , 1973, CDC 1973.
[17] Masa-aki Sato,et al. Online Model Selection Based on the Variational Bayes , 2001, Neural Computation.