Low-power photothermal probing of single plasmonic nanostructures with nanomechanical string resonators.

We demonstrate the direct photothermal probing and mapping of single plasmonic nanostructures via the temperature-induced detuning of nanomechanical string resonators. Single Au nanoslits and nanorods are illuminated with a partially polarized focused laser beam (λ = 633 nm) with irradiances in the range of 0.26-38 μW/μm(2). Photothermal heating maps with a resolution of ∼375 nm are obtained by scanning the laser over the nanostructures. Based on the string sensitivities, absorption efficiencies of 2.3 ± 0.3 and 1.1 ± 0.7 are extracted for a single nanoslit (53 nm × 1 μm) and nanorod (75 nm × 185 nm). Our results show that nanomechanical resonators are a unique and robust analysis tool for the low-power investigation of thermoplasmonic effects in plasmonic hot spots.

[1]  D. Natelson,et al.  Thermoplasmonics: quantifying plasmonic heating in single nanowires. , 2014, Nano letters.

[2]  Silvan Schmid,et al.  Photothermal infrared spectroscopy of airborne samples with mechanical string resonators. , 2013, Analytical chemistry.

[3]  Silvan Schmid,et al.  Photothermal analysis of individual nanoparticulate samples using micromechanical resonators. , 2013, ACS nano.

[4]  A. Centrone,et al.  Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique. , 2013, Nano letters.

[5]  T. Kippenberg,et al.  Plasmon nanomechanical coupling for nanoscale transduction. , 2013, Nano letters.

[6]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[7]  Silvan Schmid,et al.  Damping mechanisms in high-Q micro and nanomechanical string resonators , 2011 .

[8]  A. Boisen,et al.  Ultrasensitive string-based temperature sensors , 2011 .

[9]  G. Baffou,et al.  Mapping heat origin in plasmonic structures. , 2010, Physical review letters.

[10]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[11]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[12]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[13]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[14]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[15]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[16]  Y. Ozaki,et al.  Surface-Enhanced Raman Spectroscopy , 2005 .

[17]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[18]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[19]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[20]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .