Optimal pricing in black box producer-consumer Stackelberg games using revealed preference feedback

[1]  Ruta Mehta,et al.  Social Welfare and Profit Maximization from Revealed Preferences , 2017, WINE.

[2]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[3]  Vikram Krishnamurthy,et al.  Nonparametric Demand Forecasting and Detection of Energy Aware Consumers , 2015, IEEE Transactions on Smart Grid.

[4]  James O. Berger,et al.  Estimating Shape Constrained Functions Using Gaussian Processes , 2016, SIAM/ASA J. Uncertain. Quantification.

[5]  Valerie A. Ramey,et al.  Nonconvex Costs and the Behavior of Inventories , 1991, Journal of Political Economy.

[6]  Yan Shi,et al.  Multiobjective optimization technique for demand side management with load balancing approach in smart grid , 2016, Neurocomputing.

[7]  Martin Hoefer,et al.  Learning Market Parameters Using Aggregate Demand Queries , 2016, AAAI.

[8]  Claudio Gallicchio,et al.  Prediction of the Italian electricity price for smart grid applications , 2015, Neurocomputing.

[9]  Paul R. Milgrom,et al.  Monotone Comparative Statics , 1994 .

[10]  Chaitanya Swamy,et al.  Achieving target equilibria in network routing games without knowing the latency functions , 2019, Games Econ. Behav..

[11]  Koichiro Ito,et al.  Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing , 2012 .

[12]  W. Barnett,et al.  Time-varying parameters in the almost ideal demand system and the Rotterdam model: will the best specification please stand up? , 2013 .

[13]  Neil D. Lawrence,et al.  Kernels for Vector-Valued Functions: a Review , 2011, Found. Trends Mach. Learn..

[14]  Bo An,et al.  Manipulating a Learning Defender and Ways to Counteract , 2019, NeurIPS.

[15]  Aaron Roth,et al.  Multidimensional Dynamic Pricing for Welfare Maximization , 2016, EC.

[16]  Rahul Deb,et al.  A testable model of consumption with externalities , 2009, J. Econ. Theory.

[17]  C. T. Kelley,et al.  A Locally-Biased form of the DIRECT Algorithm , 2001, J. Glob. Optim..

[18]  Vikram Krishnamurthy,et al.  PAC Algorithms for Detecting Nash Equilibrium Play in Social Networks: From Twitter to Energy Markets , 2016, IEEE Access.

[19]  Yan Gao,et al.  Real-time pricing scheme based on Stackelberg game in smart grid with multiple power retailers , 2017, Neurocomputing.

[20]  Quanyan Zhu,et al.  Dependable Demand Response Management in the Smart Grid: A Stackelberg Game Approach , 2013, IEEE Transactions on Smart Grid.

[21]  Theja Tulabandhula,et al.  Learning Buyer Behavior under Realistic Pricing Restrictions , 2018, ISAIM.

[22]  S. Afriat THE CONSTRUCTION OF UTILITY FUNCTIONS FROM EXPENDITURE DATA , 1967 .

[23]  Vikram Krishnamurthy,et al.  Afriat's Test for Detecting Malicious Agents , 2012, IEEE Signal Processing Letters.

[24]  Michael Wooldridge,et al.  Imitative Follower Deception in Stackelberg Games , 2019, EC.

[25]  Vikram Krishnamurthy,et al.  Utility Change Point Detection in Online Social Media: A Revealed Preference Framework , 2016, IEEE Transactions on Signal Processing.

[26]  Shaojie Tang,et al.  Online Pricing with Reserve Price Constraint for Personal Data Markets , 2019, 2020 IEEE 36th International Conference on Data Engineering (ICDE).

[27]  Seasonally Varying Preferences: Theoretical Foundations for an Empirical Regularity , 2014 .

[28]  Paola Sapienza,et al.  Time Varying Risk Aversion , 2013, Journal of Financial Economics.