Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy

Single-molecule switching (SMS) microscopy is a super-resolution method capable of producing images with resolutions far exceeding that of the classical diffraction limit. However, like all optical microscopes, SMS microscopes are sensitive to, and often limited by, specimen-induced aberrations. Adaptive optics (AO) has proven beneficial in a range of microscopes to overcome the limitations caused by aberrations. We report here on new AO methods for SMS microscopy that enable the feedback correction of specimen-induced aberrations. The benefits are demonstrated through two-dimensional and three-dimensional STORM imaging. We expect that this advance will broaden the scope of SMS microscopy by enabling deep-cell and tissue-level imaging.

[1]  Virendra N. Mahajan,et al.  Strehl ratio for primary aberrations: some analytical results for circular and annular pupils. , 1982 .

[2]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[3]  T. Wilson,et al.  Aberration correction for confocal imaging in refractive‐index‐mismatched media , 1998 .

[4]  Thorsten Staudt,et al.  Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy. , 2011, Nano letters.

[5]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[6]  T. Wilson,et al.  Adaptive aberration correction in a confocal microscope , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Martin J Booth,et al.  Adaptive optics enables 3D STED microscopy in aberrating specimens. , 2012, Optics express.

[8]  Martin J. Booth,et al.  Self calibration of sensorless adaptive optical microscopes , 2011 .

[9]  M. Gustafsson,et al.  Phase‐retrieved pupil functions in wide‐field fluorescence microscopy , 2004, Journal of microscopy.

[10]  J. Bewersdorf,et al.  Three dimensional single molecule localization using a phase retrieved pupil function. , 2013, Optics express.

[11]  D. Débarre,et al.  Simple characterisation of a deformable mirror inside a high numerical aperture microscope using phase diversity , 2011, Journal of microscopy.

[12]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[13]  Sjoerd Stallinga,et al.  Measuring image resolution in optical nanoscopy , 2013, Nature Methods.

[14]  Joerg Bewersdorf,et al.  Optical nanoscopy: from acquisition to analysis. , 2012, Annual review of biomedical engineering.

[15]  Keith A. Lidke,et al.  Fast, single-molecule localization that achieves theoretically minimum uncertainty , 2010, Nature Methods.

[16]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[17]  Wei Zhang,et al.  Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy. , 2014, Optics letters.

[18]  Martin J. Booth,et al.  Adaptive optical microscopy: the ongoing quest for a perfect image , 2014, Light: Science & Applications.

[19]  H. P. Kao,et al.  Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. , 1994, Biophysical journal.

[20]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[21]  S. Weiss,et al.  Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI) , 2010, Optics express.

[22]  Tobias M. P. Hartwich,et al.  Video-rate nanoscopy using sCMOS camera- specific single-molecule localization algorithms , 2013 .

[23]  Robert K. Tyson Principles of Adaptive Optics , 1991 .

[24]  J. Zerubia,et al.  Gaussian approximations of fluorescence microscope point-spread function models. , 2007, Applied optics.

[25]  Lisa A Poyneer,et al.  Scene-based Shack-Hartmann wave-front sensing: analysis and simulation. , 2003, Applied optics.

[26]  Nanometric 3D-tracking of individual quantum dots in cells , 2007 .

[27]  J. Wilhjelm,et al.  Quantitative pupil analysis in stimulated emission depletion microscopy using phase retrieval. , 2012, Optics letters.

[28]  Ignacio Izeddin,et al.  PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. , 2012, Optics express.

[29]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[30]  Keith A. Lidke,et al.  Simultaneous multiple-emitter fitting for single molecule super-resolution imaging , 2011, Biomedical optics express.

[31]  P. Gönczy,et al.  Resolution Doubling in 3D-STORM Imaging through Improved Buffers , 2013, PloS one.

[32]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[33]  Martin J. Booth,et al.  Optimum deformable mirror modes for sensorless adaptive optics , 2009 .

[34]  Sean Quirin,et al.  Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions , 2011, Proceedings of the National Academy of Sciences.

[35]  Glen L. Beane,et al.  Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. , 2009, Optics express.