Clinical, Functional and Genetic Analysis of Twenty-Four Patients with Chronic Granulomatous Disease – Identification of Eight Novel Mutations in CYBB and NCF2 Genes

[1]  R. Krance,et al.  Excellent survival after sibling or unrelated donor stem cell transplantation for chronic granulomatous disease. , 2012, The Journal of allergy and clinical immunology.

[2]  D. Grunwald,et al.  Role of Putative Second Transmembrane Region of Nox2 Protein in the Structural Stability and Electron Transfer of the Phagocytic NADPH Oxidase* , 2011, The Journal of Biological Chemistry.

[3]  A. Araujo,et al.  Syndrome d’activation lymphohistiocytaire associé à une infection à Burkholderia cepacia complex chez un nourrisson révélant une granulomatose septique et une intégration génomique du virus HHV-6 , 2011 .

[4]  P. Frange,et al.  [Lymphohistiocytic activation syndrome and Burkholderia cepacia complex infection in a child revealing chronic granulomatous disease and chromosomal integration of the HHV-6 genome]. , 2011, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[5]  M. Dinauer,et al.  Gene therapy of chronic granulomatous disease: the engraftment dilemma. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[6]  A. Jesaitis,et al.  Characterization of superoxide overproduction by the D-Loop(Nox4)-Nox2 cytochrome b(558) in phagocytes-Differential sensitivity to calcium and phosphorylation events. , 2011, Biochimica et biophysica acta.

[7]  S. Holland,et al.  Residual NADPH oxidase and survival in chronic granulomatous disease. , 2010, The New England journal of medicine.

[8]  D. Grunwald,et al.  Regulation of NADPH Oxidase Activity in Phagocytes , 2010, The Journal of Biological Chemistry.

[9]  J. Rendu,et al.  Development of a multiplex ligation-dependent probe amplification (MLPA) assay for quantification of the OCRL1 gene. , 2010, Clinical biochemistry.

[10]  S. Holland,et al.  Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (second update). , 2000, Blood cells, molecules & diseases.

[11]  S. Holland,et al.  Hematologically important mutations: X-linked chronic granulomatous disease (third update). , 1997, Blood cells, molecules & diseases.

[12]  Qing Song,et al.  A copy number variation in human NCF1 and its pseudogenes , 2010, BMC Genetics.

[13]  Xing Jun Li,et al.  A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. , 2009, Blood.

[14]  A. Plebani,et al.  Molecular characterization of a large cohort of patients with Chronic Granulomatous Disease and identification of novel CYBB mutations: an Italian multicenter study. , 2009, Molecular immunology.

[15]  Dirk Roos,et al.  Chronic Granulomatous Disease: The European Experience , 2009, PloS one.

[16]  W. Hayajneh,et al.  First Report of Clinical, Functional, and Molecular Investigation of Chronic Granulomatous Disease in Nine Jordanian Families , 2009, Journal of Clinical Immunology.

[17]  P. Koty,et al.  X-linked chronic granulomatous disease secondary to skewed X chromosome inactivation in a female with a novel CYBB mutation and late presentation. , 2008, Clinical immunology.

[18]  M. Stasia,et al.  Genetics and immunopathology of chronic granulomatous disease , 2008, Seminars in Immunopathology.

[19]  H. Malech,et al.  Genetics, biology and clinical management of myeloid cell primary immune deficiencies: chronic granulomatous disease and leukocyte adhesion deficiency , 2007, Current opinion in hematology.

[20]  D. Grunwald,et al.  Leu505 of Nox2 is crucial for optimal p67phox‐dependent activation of the flavocytochrome b558 during phagocytic NADPH oxidase assembly , 2007, Journal of leukocyte biology.

[21]  J. B. S. Haldane,et al.  The rate of spontaneous mutation of a human gene , 1935, Journal of Genetics.

[22]  M. Barbouche,et al.  Genetic and mutational heterogeneity of autosomal recessive chronic granulomatous disease in Tunisia , 2006, Journal of Human Genetics.

[23]  G Mortier,et al.  Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports , 2006, Journal of Medical Genetics.

[24]  Shireen A. Sarraf,et al.  Long polymerase chain reaction-based fluorescence in situ hybridization analysis of female carriers of X-linked chronic granulomatous disease deletions. , 2005, The Journal of molecular diagnostics : JMD.

[25]  R. Gavrieli,et al.  Unusual late presentation of X-linked chronic granulomatous disease in an adult female with a somatic mosaic for a novel mutation in CYBB. , 2005, Blood.

[26]  D. Cooper,et al.  The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: Causes and consequences , 1992, Human Genetics.

[27]  D. Cooper,et al.  Mechanisms of insertional mutagenesis in human genes causing genetic disease , 1991, Human Genetics.

[28]  D. Cooper,et al.  Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment , 1991, Human Genetics.

[29]  D. Cooper,et al.  The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions , 1990, Human Genetics.

[30]  F. Morel,et al.  Characterization of six novel mutations in the CYBB gene leading to different sub-types of X-linked chronic granulomatous disease , 2004, Human Genetics.

[31]  H. Sumimoto,et al.  Molecular mechanism for activation of superoxide-producing NADPH oxidases. , 2003, Molecules and cells.

[32]  F. Morel,et al.  Severe clinical forms of cytochrome b-negative chronic granulomatous disease (X91-) in 3 brothers with a point mutation in the promoter region of CYBB. , 2003, The Journal of infectious diseases.

[33]  A. Maturana,et al.  Molecular and functional characterization of a new X-linked chronic granulomatous disease variant (X91+) case with a double missense mutation in the cytosolic gp91phox C-terminal tail. , 2002, Biochimica et biophysica acta.

[34]  M. de Boer,et al.  Gene-scan method for the recognition of carriers and patients with p47(phox)-deficient autosomal recessive chronic granulomatous disease. , 2001, Experimental hematology.

[35]  P. Newburger,et al.  Autosomal recessive chronic granulomatous disease caused by defects in NCF-1, the gene encoding the phagocyte p47-phox: mutations not arising in the NCF-1 pseudogenes. , 2001, Blood.

[36]  F. Morel,et al.  Complementation of NADPH oxidase in p67-phox-deficient CGD patients p67-phox/p40-phox interaction. , 2000, European journal of biochemistry.

[37]  S. Antonarakis,et al.  Mutation nomenclature extensions and suggestions to describe complex mutations: A discussion , 2000 .

[38]  L. Henderson Role of Histidines Identified by Mutagenesis in the NADPH Oxidase-associated H+ Channel* , 1998, The Journal of Biological Chemistry.

[39]  R. Haugland,et al.  A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. , 1997, Analytical biochemistry.

[40]  P. Heyworth,et al.  Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease. , 1996, Blood cells, molecules & diseases.

[41]  P. Heyworth,et al.  Hematologically important mutations: X-linked chronic granulomatous disease. , 1996, Blood cells, molecules & diseases.

[42]  W. Marsh,et al.  The Kell blood group system and the McLeod phenotype. , 1993, Seminars in hematology.

[43]  M. Turner‐Warwick For Discussion , 1992, Journal of the Royal College of Physicians of London.

[44]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979. , 1992, Biotechnology.

[45]  J. Seigneurin,et al.  Activation of O2(-)-generating oxidase in an heterologous cell-free system derived from Epstein-Barr-virus-transformed human B lymphocytes and bovine neutrophils. Application to the study of defects in cytosolic factors in chronic granulomatous disease. , 1991, European journal of biochemistry.

[46]  A. Verhoeven,et al.  Characterization of two monoclonal antibodies against cytochrome b558 of human neutrophils. , 1989, Blood.

[47]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[48]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[49]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[50]  A. Bøyum,et al.  Isolation of mononuclear cells and granulocytes from human blood. , 1968 .

[51]  C. Mogensen The glomerular permeability determined by dextran clearance using Sephadex gel filtration. , 1968, Scandinavian journal of clinical and laboratory investigation.