Spectral Analysis of Dynamic PET Studies

We describe a new technique for the analysis of dynamic positron emission tomography (PET) studies in humans, where data consist of the time courses of label in tissue regions of interest and in arterial blood, following the administration of radiolabeled tracers. The technique produces a simple spectrum of the kinetic components which relate the tissue's response to the blood activity curve. From this summary of the kinetic components, the tissue's unit impulse response can be derived. The convolution of the arterial input function with the derived unit impulse response function gives the curve of best fit to the observed tissue data. The analysis makes no a priori assumptions regarding the number of compartments or components required to describe the time course of label in the tissue. Rather, it is based on a general linear model, presented here in a formulation compatible with its solution using standard computer algorithms. Its application is illustrated with reference to cerebral blood flow, glucose utilization, and ligand binding. The interpretation of the spectra, and of the tissue unit impulse response functions, are discussed in terms of vascular components, unidirectional clearance of tracer by the tissue, and reversible and irreversible phenomena. The significance of the number of components which can be identified within a given datum set is also discussed. The technique facilitates the interpretation of dynamic PET data and simplifies comparisons between regions and between subjects.

[1]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[2]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.

[3]  C S Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  C. Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data. Generalizations , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  I. Kanno,et al.  Error Analysis of a Quantitative Cerebral Blood Flow Measurement Using H215O Autoradiography and Positron Emission Tomography, with Respect to the Dispersion of the Input Function , 1986, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  P M Bloomfield,et al.  Combination of Dynamic and Integral Methods for Generating Reproducible Functional CBF Images , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  V J Cunningham,et al.  Compartmental Analysis of Diprenorphine Binding to Opiate Receptors in the Rat in vivo and its Comparison with Equilibrium Data in vitro , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.