Cascaded filtering for biometric identification using random projections

Biometric identification often involves explicit comparison of a probe template against each template stored in a database. This approach becomes extremely time-consuming as the size of the database increases. Filtering approaches use a light-weight comparison to reduce the database to smaller set of candidates for explicit comparison. However, most existing filtering schemes use specific features that are hand-crafted for the biometric trait at each stage of the filtering. In this work, we show that a cascade of simple linear projections on random lines can achieve significant levels of filtering. Each stage of filtering consists of projecting the probe onto a specific line and removal of database samples outside a window around the probe. The approach provides a way of automatic generation of filters and avoids the need of developing specific features for different biometric traits. The method also provides us with a variety of parameters such as the projection lines, the number and order of projections, and the window sizes to customize the filtering process to a specific application. Experimental results show that using an ensemble of projections reduce the search space by 60% without increasing the false negative identification rate.

[1]  Anil K. Jain,et al.  Soft Biometric Traits for Continuous User Authentication , 2010, IEEE Transactions on Information Forensics and Security.

[2]  Davide Maltoni,et al.  Minutia Cylinder-Code: A New Representation and Matching Technique for Fingerprint Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  A. Anthony Irudhayaraj,et al.  Biometric system , 2011, 2011 3rd International Conference on Electronics Computer Technology.

[4]  Heikki Mannila,et al.  Random projection in dimensionality reduction: applications to image and text data , 2001, KDD '01.

[5]  Alessandra Lumini,et al.  Fingerprint Classification by Directional Image Partitioning , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Atif Iqbal,et al.  Cascaded filtering for fingerprint identification using random projections , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[7]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[8]  A.T.B. Jin,et al.  Cancellable Biometrics and Multispace Random Projections , 2006, CVPR Workshops.

[9]  Craig I. Watson,et al.  Fingerprint Vendor Technology Evaluation 2003: Summary of Results and Analysis Report , 2004 .

[10]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition , 2005, Springer Professional Computing.

[11]  Edie M. Rasmussen,et al.  Intellectual Access to Images , 1999, Libr. Trends.

[12]  Tong Liu,et al.  Fingerprint Indexing Based on LAS Registration , 2006, 2006 International Conference on Image Processing.

[13]  George Bebis,et al.  Fingerprint identification using Delaunay triangulation , 1999, Proceedings 1999 International Conference on Information Intelligence and Systems (Cat. No.PR00446).

[14]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Fabian Monrose,et al.  Authentication via keystroke dynamics , 1997, CCS '97.

[16]  Arun Ross,et al.  Indexing fingerprints using minutiae quadruplets , 2011, CVPR 2011 WORKSHOPS.

[17]  Li Fang,et al.  Palmprint Classification , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[18]  Xiao Yang,et al.  Palmprint indexing based on ridge features , 2011, 2011 International Joint Conference on Biometrics (IJCB).

[19]  George Bebis,et al.  Face recognition experiments with random projection , 2005, SPIE Defense + Commercial Sensing.

[20]  Anil K. Jain,et al.  FVC2002: Second Fingerprint Verification Competition , 2002, Object recognition supported by user interaction for service robots.

[21]  Piotr Indyk,et al.  Approximate Nearest Neighbor: Towards Removing the Curse of Dimensionality , 2012, Theory Comput..

[22]  Loris Nanni,et al.  A two-stage fingerprint classification system , 2003, WBMA '03.

[23]  Sabih H. Gerez,et al.  Indexing Fingerprint Databases Based on Multiple Features , 2001 .

[24]  Matej Kristan,et al.  Dimensionality Reduction for Distributed Vision Systems Using Random Projection , 2010, 2010 20th International Conference on Pattern Recognition.

[25]  Anil K. Jain,et al.  A Multichannel Approach to Fingerprint Classification , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Trevor Darrell,et al.  Fast pose estimation with parameter-sensitive hashing , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[27]  Tieniu Tan,et al.  Improving iris recognition accuracy via cascaded classifiers , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[28]  Arun Ross,et al.  Augmenting ridge curves with minutiae triplets for fingerprint indexing , 2007, SPIE Defense + Commercial Sensing.

[29]  Sharath Pankanti,et al.  On the Individuality of Fingerprints , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Simon G. Davies,et al.  Touching Big Brother , 1994 .

[31]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[32]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[33]  N.B. Puhan,et al.  A novel iris database indexing method using the iris color , 2008, 2008 3rd IEEE Conference on Industrial Electronics and Applications.

[34]  Phalguni Gupta,et al.  Indexing Iris Biometric Database Using Energy Histogram of DCT Subbands , 2009, IC3.

[35]  Feng Hao,et al.  A Fast Search Algorithm for a Large Fuzzy Database , 2008, IEEE Transactions on Information Forensics and Security.

[36]  Avner Magen,et al.  Dimensionality Reductions That Preserve Volumes and Distance to Affine Spaces, and Their Algorithmic Applications , 2002, RANDOM.

[37]  Dongjae Lee,et al.  An Improved Fingerprint Indexing Algorithm Based on the Triplet Approach , 2003, AVBPA.

[38]  John Daugman How iris recognition works , 2004 .

[39]  Davide Maltoni,et al.  Fingerprint Indexing Based on Minutia Cylinder-Code , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Antonio Torralba,et al.  Small codes and large image databases for recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Phalguni Gupta,et al.  An efficient technique for indexing multimodal biometric databases , 2009, Int. J. Biom..

[42]  John C. Dalton,et al.  Hierarchical browsing and search of large image databases , 2000, IEEE Trans. Image Process..

[43]  Ming Li,et al.  Pyramid edge detection based on stack filter , 1997, Pattern Recognit. Lett..

[44]  David Zhang,et al.  Online Palmprint Identification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Sharath Pankanti,et al.  Biometrics, Personal Identification in Networked Society: Personal Identification in Networked Society , 1998 .

[46]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[47]  Anil K. Jain,et al.  Handbook of Face Recognition, 2nd Edition , 2011 .

[48]  Sharath Pankanti,et al.  10.5 – Fingerprint Classification and Matching , 2005 .

[49]  M. Kristan,et al.  Efficient Dimensionality Reduction Using Random Projection , 2010 .

[50]  David Zhang,et al.  Hierarchical palmprint identification via multiple feature extraction , 2002, Pattern Recognit..

[51]  MaltoniDavide,et al.  Fingerprint Indexing Based on Minutia Cylinder-Code , 2011 .

[52]  Ankit Jain,et al.  Indexing the World Wide Web: The Journey So Far , 2012 .

[53]  Edward Richard Henry,et al.  Classification and uses of finger prints , 1928 .

[54]  David Zhang,et al.  Palmprint classification using principal lines , 2004, Pattern Recognit..

[55]  Bir Bhanu,et al.  Fingerprint Indexing Based on Novel Features of Minutiae Triplets , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  Anil K. Jain,et al.  A Real-Time Matching System for Large Fingerprint Databases , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Jon M. Kleinberg,et al.  Two algorithms for nearest-neighbor search in high dimensions , 1997, STOC '97.

[58]  Sharath Pankanti,et al.  FingerCode: a filterbank for fingerprint representation and matching , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[59]  Fang Li,et al.  Hierarchical Identification of Palmprint using Line-based Hough Transform , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[60]  Adnan Amin,et al.  Fingerprint classification: a review , 2004, Pattern Analysis and Applications.

[61]  Tong Liu,et al.  Fingerprint indexing based on singular point correlation , 2005, IEEE International Conference on Image Processing 2005.

[62]  Arun Ross,et al.  Indexing iris images , 2008, 2008 19th International Conference on Pattern Recognition.

[63]  P. Jonathon Phillips,et al.  Face Recognition Vendor Test 2002 Performance Metrics , 2003, AVBPA.

[64]  Sanjoy Dasgupta,et al.  Experiments with Random Projection , 2000, UAI.

[65]  Venu Govindaraju,et al.  Indexing Biometric Databases Using Pyramid Technique , 2005, AVBPA.

[66]  Carla E. Brodley,et al.  Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach , 2003, ICML.

[67]  A. Ganson Fingerprint Classification , 1970, Nature.

[68]  Maria Jesus Martin,et al.  The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 , 2003, Nucleic Acids Res..

[69]  Robert S. Germain,et al.  Fingerprint matching using transformation parameter clustering , 1997 .

[70]  Anil K. Jain,et al.  Biometric Systems: Technology, Design and Performance Evaluation , 2004 .